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Abstract

The goal of this diploma thesis is the development and implementation of a fusion method
for high resolution optical and SAR imagery. The developed approach is generic and hence
it is not limited to cases when exact sensor parameters are known. The idea is to first reduce
geometric distortions with rather generic transforms, applicable to different kinds of optical
and SAR sensors, respectively. For example, the optical images are ortho-rectified using
the collinearity equations. In the following, the ortho-rectified images are prepared for line
extraction. Smoothing, anti-speckling and classification are conducted. The classification
serves for partitioning the images into rectified ground and unrectified buildings. Next,
lines are extracted because classical pixel based registration methods often fail for our very
high resolution images. Furthermore, distance images are derived from the extracted lines.
They are compared iteratively and resampled one onto the other. This iterative registration
procedure is modularly constructed and thus allows for adaption to various input imagery.
All algorithms are implemented in the open source software library ORFEO Toolbox (OTB).
The diploma thesis was accomplished at the Centre National d’Etudes Spatiales (CNES) in
Toulouse, section DCT/SI/AP, in cooperation with Communication & Systémes (CS).
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Résumeé

L’objectif de ce rapport de stage est le developpement et I'implémentation d’'un modeéle
de fusion pour les imageries optiques & haute résolution et les images SAR. La méthode
développée est générique et par conséquence, elle n’est pas limitée aux cas ou les parameétres
des capteurs sont connus. L’idée est de commencer par diminuer les distorisions géométriques
avec une transformation générique, applicable pour les différents types d’imageries. Par
exemple, les images optiques sont ortho-rectifiées en utilisant les équations de colinéarité.
Ensuite, les images orthorectifiées sont préparées pour l'extraction de lignes en utilisant
plusieurs étapes de filtrage. Ces filtrages effectuent le lissage, débruitage et la classification.
La classification sert & classifier les images en segments sols rectifiés et des batiments non-
rectifiés. Ensuite, les lignes sont extraites car les méthodes basées sur uniquement les pixels
ne sont pas assez performantes. Suite & l'extraction des lignes, les images distances sont
obtenues. Ces images sont comparées itérativement et re-échantillonées 1'une sur l'autre.
Cette procédure d’enregistrement est modulaire et par conséquent, elle est adaptée a différents
types d’imagerie. Tout les algorithmes sont implémentés en utlisant la librairie & code source
libre ORFEO ToolBox (OTB). Ce travail a été mené au Centre National d’Etudes Spatiales
(CNES) a Toulouse, service DCT/SI/AP, en coopération avec Communication & Systémes
(CS).
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Kurzfassung

Das Ziel dieser Diplomarbeit ist die Entwicklung und Implementierung einer Fusionsmethode
fiir optische und SAR Bilder hoher Auflésung. Die Methode ist generisch, da Sie nicht auf
spezielle Sensorparameter angewiesen ist. Die Idee ist, zundchst mit generellen geometrischen
Transformationen, die sich auf alle optischen und SAR Sensoren anwenden lassen, moglichst
viele geometrische Verzerrungen in den Bildern zu beseitigen. Fiir den optischen Fall werden
z.B. die Kollinearitédtsgleichungen genutzt. Die so erzielten ortho-rektifizierten Bilder werden
darauthin separat weiteren Analyseschritten unterzogen, um die Unterschiede der Bilder in
Geometrie und Radiometrie zu verringern. Nach der Vorverarbeitung der Bilder folgt eine
Klassifikation, um fiir die spétere Registrierung zwischen rektifizierten Bodenflichen und
nicht rektifizierten Gebduden zu unterscheiden. Als néchster Bearbeitungsschritt wird eine
Linienextraktion durchgefiihrt, gefolgt von der Berechnung von Distanzbildern. Die Distanz-
bilder der als rektifiziert klassifizierten Linien werden in einem iterativen Verfahren verglichen
und aufeinander abgebildet. Dieses iterative Verfahren ist modular aufgebaut und erlaubt so
die Anpassung auf die jeweiligen Eingabebilder. Alle entwickelten Algorithmen sind in der
ORFEO Toolbox (OTB) implementiert. Die Diplomarbeit wurde durchgefiihrt am Centre
National d’Etudes Spatiales (CNES) in Toulouse, Abteilung DCT/SI/AP, in Kooperation

mit Communication & Systémes (CS).
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1 Introduction

1.1 Motivation

Within recent years, a variety of new high resolution airborne (Ramses, Pelican, PAMIR,
DoSAR) and spaceborne (IKONOS2, ALOS, TerraSAR-X, CosmoSkyMed) imaging remote
sensing sensors have been put into place. These sensors are either active (Synthetic Aperture
Radar) or passive (optical). Further systems will be launched in near future (Radarsat2,
Pléiades) to even extend today’s potential of submetric imagery. Hence, new possibilities for
the combined analysis of multi-sensor imagery of very high resolution arise. The combination
of both radar and optical imagery enables the use of complementary information of the same

scene and various application scenarios may be thought of.

An example will illustrate the need for combined optical and SAR imagery. In August
2002 a natural hazard of enormous extent hit parts of eastern and central Europe: the Elbe
flooding (Fig. 1.1(a)). It caused 100 billion Euros of damage but fortunately almost no
lifes were lost due to rapid emergency response. Satellite imagery supported the decision
making process. The International Charter "Space and Major Disasters" [CNES, 2007a| was
activated, facilitating the immediate exploitation of satellite images from international SAR
and optical sensors. Radar images from ERS2 and Envisat were used to generate a virtual
3D landscape model (Fig. 1.1(b)). This model was overlaid with optical images in order
to distinguish between farmland, forests, cities etc. (Fig. 1.2(a)). Furthermore, a risk map
was derived, enabling emergency prediction. Areas which were in danger to be flooded are
displayed in red while safe areas are shown in green (Fig. 1.2(b)). With the support of this
risk map, much harm could be prevented. Roads were closed in time, windows and doors
of houses within the risk zone were bricked up, entire areas could be evacuated before they
were flooded. Since all data was continuously updated, changes within the flooded regions
and the floods extent could be detected rapidly.

Hence, one major field calling for enhanced remotely gathered information is rapid change
detection. It is conducted after the occurrence of natural or man-made hazards in order to
facilitate emergency response. Satellites have the advantage of being operational globally

while airborne sensors provide higher resolution data. Optical sensors provide relatively
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Figure 1.1: (a) Extent of the Elbe flood in eastern Germany in August 2002 (© ESA 2003),
(b) ERS2 images overlaid with infrared images (© ESA 2003)

Figure 1.2: (a) DTM generated from radar data overlaid with optical image (© ESA 2003),
(b) Risk map derived from a DTM (© ESA 2003)

easy to interprete images since their viewing geometry and frequencies are closely related to
the human perspective. With multispectral systems, color data is gathered. Color images
of metric and even submetric (after pan-sharpening) ground resolution are available from

diverse satellites. Although it usually takes several days for a satellite to fly again over
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the same region, the relatively large number of satellites allows fast coverage of the area
of interest. Some satellites also provide steering facilities, decreasing the time to reach a
certain region. However, airborne sensors are more flexible. Optical data of the scene before
the hazard stroke the region is usually available. Even in the case of developing countries
basic optical data very often exists. Multiple automatic and semi-automatic algorithms
have already been proposed to detect changes between two optical images. However, optical
sensors need daylight and an unobstructed view of the scene of interest in order to produce
meaningful data. This may not always be the case during or after hazardous events. Areas
hit by hurricanes or floods are often located in tropical regions. Hence, dense cloud coverage
limits the use of optical sensors. SAR sensors are not bound to the constraint of daylight
and cloudless conditions. The radar technique actively transmits a signal and thus does not
depend on daylight. A SAR sensor, either airborne or spaceborne, is capable of capturing
data even at night, extending data collection time to 24 hours a day. The long wavelength
compared to the optical wavelength facilitates the penetration of dense cloud layers. However,
SAR images are not as easy to interprete as optical images since the viewing geometry and
the wavelength domain are different. Different object features are measured and no color
information is available. Additionally, effects like layover and shadowing, described in detail in
2.3.3, complicate information extraction. Considering the previously outlined advantages and
disadvantages, it seems only logical to combine optical and SAR data. Details not detectable
in optical images may appear in SAR images and vice versa. The fusion of optical and SAR
images is usually conducted manually. However, manual fusion of multi-sensor imagery is
a very time consuming process. In order to obtain accurate results, an experienced remote
sensing expert is needed. Time critical applications call for easy to operate automated image
processing. Therefore, one focus of CNES’ (Centre National d’Etudes Spatiales) and IPI’s
(Institut fiir Photogrammetrie und Geolnformation) current research is on the automated
fusion of optical and radar images as well as on information extraction of such fused data. In
order to facilitate international cooperation and knowledge sharing, all developed algorithms
are integrated into the open source software library ORFEO Toolbox (OTB!). OTB was
introduced by CNES. This toolbox contains a set of algorithms for the exploitation of future
submetric optical and radar images provided by the ORFEO program. ORFEQ is a French-
Italian high resolution Earth observation program. The CNES provides two optical satellites
(Pléiades) and the ASI (Agenzia Spaziale Italiana) four radar satellites (CosmoSkyMed).
Hence, one focus of ORFEO is on the joined exploitation of submetric resolution optical and

radar imagery. Refer to Annex A for further details of the ORFEO program.

'see the OTB webpage http://otb.cnes.fr
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1 Introduction

1.2 State of the Art

The fusion of digital imagery is a valuable tool for the combined exploitation of imagery
from multiple image sources or just different frequency bands. It is applied in such different
fields like medical imagery, computer vision, close range photogrammetry and remote sensing.
Hence, image fusion is not a technique limited to remote sensing imagery at all. For example,
various algorithms have been introduced for medical imagery (e.g. the fusion of MRT and
CT images) and proved to be very useful for this remote sensing project, too. As already
mentioned in the very first sentences of the motivation, the field of high resolution imag-
ing sensors, either airborne or spaceborne, has been enriched enormously during the past
few years. This development facilitates the combined exploitation of multi-sensor, multi-
resolution, multi-temporal and multi-frequency imagery. Additionally, fusion is not limited
to merging one image with another image. Current research efforts also comprise the fusion
of remote sensing imagery with GIS data and maps. Several different fusion approaches exist,

usually based on pixel level or on feature level.

Figure 1.3: IKONOS 1 m pan-sharpened imagery showing the MCG and Tennis Center in
Melbourne, Australia [Fraser, 2007b]

For example, the arithmetic combination of raster images on pixel level is commonly used
for pan-sharpening (Fig. 1.3). Pan-sharpening is used in order to achieve both high spectral
and spatial resolution in one image. It consists of the combination of high spectral reso-
lution bands with a band of a high spatial resolution. It is conducted by multiplying the
multi-spectral bands with the panchromatic band. A division by a synthetic intensity band
follows up. Another technique commonly used in remote sensing is the principle component
transformation (PCT) |[Morrison, 1976] which may also be thought of as kind of a fusion
technique. However, these fusion approaches usually call for data captured by the same kind
of sensor. They fail as soon as great differences in both geometry and radiometry arise. This

absolutely is the case for high resolution optical and SAR imagery. In order to achieve a fine
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registration and fusion of submetric optical and SAR images, comprehensive modelling has
to be done. Both geometry and radiometry have to be considered carefully. Therefore, an-
other fusion approach, preferably on feature level, has to be developed. A variety of research
efforts have already been made in order to merge optical and SAR data. One of the first
papers from CNES, proposing a solution on feature level, is [Inglada and Adragna, 2001].
Therein, the registration issue is stated as finding the geometric transformation minimizing
the distance between extracted features in both images. First, edges are extracted in both
images. A distance image computing the Euclidean distances from the edges of the slave
image to the edges of the master image is determined. The mean of this image is defined
as the registration error. It is minimized by finding a rigid geometric transformation that
well maps one image onto the other. A genetic algorithm is deployed for the minimization
in order to avoid local minima. It is tested on rather low resolution ERS SAR and SPOT4
data. In [Inglada and Giros, 2004| several similarity measures, e.g. mutual information, are
used for automatic fine registration of optical and SAR imagery. Local optimization of both
similarity and deformation is proposed. After testing with SPOT4 and ERS2 images, defor-
mation grids of sub-pixel accuracy are achieved. Furthermore, the automatic optical-SAR
DEM estimation from a single satellite based on the deformation grid is proposed. Based
on these results, [Inglada and Vadon, 2005] ortho-rectify and fine register SPOT5 and En-
visat/ASAR images. Registration errors due to DEM errors are estimated. In [Galland et al.,
2005| optical and SAR images are fine registered on feature level. Lines are extracted in both
images. The registration process is used to refine comprehensive sensor models incorporating
physically existing values (e.g. the sensor velocity and the terrain height). For the image

transformation, a quadratic polynomial approach is chosen.

1.3 Objective of this Project

The objective of this project was the development of an image processing chain
for the fusion of high resolution optical and SAR imagery. It was decided to
develop a generic step by step approach, capable of registering images based
on extracted features rather than on pixels. Indeed, at high resolution, pixel
approaches fail on above ground structures. An approach on a higher semantic
level is required. No detailed knowledge of the sensor parameters is needed.
Therefore, the fusion would later on be generally applicable to many kinds of remote sensing
imagery. A registration strategy based on the projects outlined in the previous section was
developed. The goal was to enable feature based registration of unrectified optical and SAR
images with submetric resolution in urban areas. New aspects of this fusion approach are

the very high resolution of the images, the introduction of a classification and the modular
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construction of the entire processing chain based on the open source software library OTB.
Modules not already existing were programmed in C++ and integrated into OTB. Each
module of the processing chain was put to test. Usually, the results of several different
techniques for each module were compared and the most promising was kept. However, the
emphasis was not on the fine tuning of all processing parameters, but on the overall fusion
strategy as well as on the implementation of the modules. This work is meant to serve as a

basis and give new ideas for future research in the field of multi-modality image registration.

1.4 Structure of this Report

The structure of this report follows the developed image fusion process step by step. Chapter
2 provides the essential theory of remote sensing imagery. It consists of three main sections.
Section 2.1 introduces the reader to the common physical background of optical and radar
imagery: electro-magnetic waves. The two following sections describe in detail the most
important properties of optical (section 2.2) and radar (section 2.3) sensors and their images.
The radar section also explains the fundamentals of the Synthetic Aperture Radar technique

which was used for capturing the test image.

Based on the essential theoretical background, the developed image registration strategy is
introduced in chapter 3. First, the two test images, one optical image and one radar image,
are displayed and their sensors are stated. Then, the reader is provided with an overview of
all necessary registration steps. In the following sections and chapters, such image processing
steps are explained in further detail. The first image processing step, the ortho-rectification of
both images, is described in section 3.3 and the corresponding equations are given. Following
up is section 3.4 explaining the preprocessing. In particular, the smoothing filters applied to

the images and their corresponding mathematical modelling is outlined.

After the geometric rectification and preprocessing of both images, chapter 4 describes
classification and feature extraction. Two classifications, the first one used as initialization
for the second one, were applied to the images. The first classification is pixel-based deploying
Support Vector Machines (section 4.1). Thereafter, a refinement of the results is achieved
considering image statistics with a Markov Random Field classification (section 4.2). Sections
4.3 and 4.4 explain the algorithms implemented for feature extraction. The last section of
this chapter briefly outlines the Danielsson technique for computing distance images from

feature images (4.5).



1.4 Structure of this Report

Chapter 5 describes the registration that is necessary for the image fusion. First, an
overview is given, providing the reader with the layout of the image registration framework.
Thereafter, the modules of the registration framework are described in detail. Section 5.2
explains the transform, section 5.3 the interpolation, section 5.4 the similarity measure and
section 5.5 the optimizer. The following chapter 6 displays and discusses the results achieved
with the image fusion approach proposed in this report. The final chapter 7 gives a conclusion

and some future perspectives for further enhancements.






2 Theoretical Background

This chapter familiarizes the reader with particular problems that complicate the image fusion
process. It begins with the fundamental physical "concept" that optical and SAR sensors
have in common: electro-magnetic waves. A brief introduction to this widespread topic with
the focus on the sensors is given (section 2.1). In the following, the essentials of optical and
SAR imagery are explained. In order to implement an appropriate automatic fusion process
for optical and SAR images, it is absolutely necessary to carefully account for the different

properties of the sensors. Two main fields have to be considered:

e radiometric properties and

e geometric properties.

In the following sections 2.2 and 2.3, the image capturing technique of the sensors is explained.
First, the focus is on the sensors (2.2.1, 2.3.1 and 2.3.2). The later on geometric deformation
modelling in 3.3 is based on considerations of these sections. Then, the image properties are

described (2.2.2 and 2.3.3). Differences between optical and SAR images are emphasized.

2.1 Propagation and Scattering of electro-magnetic Waves

Electro-magnetic waves are the most commonly measured information source in remote sens-
ing. Their precise determination in terms of signal wavelength, amplitude, plarization, and
phase with airborne or spaceborne sensors allows for the gathering of chemical and physical
information of the object of interest. Imaging sensors for Earth observation capture electro-
magnetic radiation either in the visible and near-infrared spectrum or in the micro-wave
spectrum (Fig. 2.1). The visible and near-infrared radiation is captured with optical sensors.
This spectrum allows for the detection of chemical properties of the ground objects. For
example, near-infrared radiation is strongly emitted by plants. The more chlorophyll the
plants contain, the higher is the amplitude of the emitted near-infrared radiation. Further-
more, the amount of chlorophyll within a particular plant tells about its fitness. This fitness
unveils ingredients of the soil and so on. Hence, lots of optical sensors (e.g. the LANDSAT
and SPOT satellites) measure radiation in the near-infrared spectrum for environmental and

agricultural applications.
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Figure 2.1: The spectrum of electro-magnetic waves ((¢) University of South Carolina)

The microwave spectrum is captured with radar sensors, measuring mainly physical prop-
erties. Due to the radar’s high sensitivity for water, humidity measures can be carried out.
Furthermore, radar tells about the roughness and the electrical conductivity of objects. Con-
straints for the choice of the particular wavelength are imposed by the atmosphere. It limits
the propagation of electro-magnetic waves to certain spectral bands within the optical and
the microwave spectra. Very short waves with wavelengths smaller than 0.35 pm do not pass
the atmosphere at all. Up to a wavelength of 14 pum, several spectral windows of different
sizes exist. Between 14 ym and 1 mm, any radiation is completely absorbed by the atmo-
sphere. The next spectral window opens up between 1 mm and 5 cm, enabling microwave
techniques. Any radiation emitted by the sun (optical sensor) or the sensor itself (radar sen-
sor) is bound to severe perturbations until it is finally captured. On its way to the Earth’s
surface, the electro-magnetic waves propagate through the Earth’s atmosphere. They are
reflected on the ground and propagate through the atmosphere a second time on their way
to the sensor. The atmosphere as well as the ground have an impact on the properties of the
waves and hence on the resulting image itself. In order to choose the appropriate wavelength
for an application and to make use of occuring effects for image analysis, electro-magnetic

wave propagation and diffusion have to be well understood.

While propagating through the atmosphere, electro-magnetic waves are affected by scat-
tering. Scattering describes the effect of a direction change of the wave due to very small
particles always present in the atmosphere. These particles are e.g. molecules and aerosols.
The radiation is absorbed by these particles and immediatly emmitted again. While energy
and wavelength stay constant, the propagation direction of the wave changes. Two main types

of scattering are distinguished: Rayleigh Scattering and Mie Scattering. Rayleigh Scattering

10



2.2 Optical Imagery

occurs if the objects in the atmosphere are small compared to the wavelength [Sorgel, 2006].

The intensity I, affected by scattering, strongly depends on the wavelength A.

1
ape

A well known example for Rayleigh Scattering in the optical spectrum is the blue color

I (2.1)

of the sky. Due to a smaller wavelength of blue light compared to red light, the blue waves
are scattered ten times more than the red light. Hence, the sky occurs blue during the day.
In the microwave spectrum of radar sensors, Rayleigh Scattering is due to rain drops. As a
consequence, long wavelengths are desireable for weather independent remote sensing. It has
to be considered that the molecules or atoms causing Rayleigh Scattering are rather regularly

shaped. Hence, Rayleigh Scattering is almost isotropic.

Aerosol Size [pum]
Vapour, fume, haze | 0.001 - 0.5
Industrial fume 0.5-50

Fogg, clouds 2-30
Drizzle 50 - 200
Raindrops 200 - 2000

Table 2.1: Characteristic size of the most common aerosols [Kasser and Egels, 2001]

This is not the case for Mie Scattering. Mie Scattering occurs if the objects in the atmo-
sphere are approximately of the same size as the wavelength. Within the optical spectrum,
Mie Scattering is due to aerosols (see Tab. 2.1). For the microwave spectrum e.g. birds
may cause Mie Scattering. Such objects are of rather irregular shape and therefore cause
anisotropic scattering. Additionally, aerosols are distributed rather non-uniformly. Their
density beneath five kilometers altitude varies over time, due to wind and human activities

(e.g. industrial fumes).

2.2 Optical Imagery

First remotely gathered optical images in large quantities date back to the first world war.
Pilots, flying above the enemy’s troops in propeller driven airplanes, leaned overboard and
took pictures with analog cameras. Black and white images were developed from the exposed
glass plates which were emulsified with a silver layer. Today’s modern optical sensors capture
digital images in various spectral bands. They determine the sensor’s location in real-time,
combining GPS (Global Positioning System) and IMU (Inertial Measurement Unit) measure-

ments. Applications range from data acquisition for GIS (Geographic Information Systems)

11



2 Theoretical Background

and environmental monitoring to complete 3D modelling of cities (e.g. Google Earth, Mi-
crosoft Virtual Earth). A large variety of both airborne and spaceborne sensors exists, each
of them particularly designed for a special application. The following sections will describe
the basics of optical remote sensing imagery. Although analog airborne cameras are still in
operation, the focus will be on digital sensors. Section 2.2.1 explains the sensors whereas

section 2.2.2 describes the images.

2.2.1 Principle of Optical Sensors

The imagery we use in this project is captured with digital sensors, either airborne or space-
borne. They are specifically designed to study the shape, details and contours of objects on
the surface of the earth. Spectral bands of choice are the visible and near infrared spectra in
rather broad spectral bandwidths. The panchromatic channel (bandwidth between 100 - 200
nm) around the visible spectrum (380 - 780 nm) enables the best spatial resolution. Usually,
adding two or three narrower bands (bandwidths 50 - 100 nm) with a lower spatial resolution
provides sufficient results for imaging purposes [Assemat et al., 2005]. The digital detectors
inside the cameras are very sensitive, offering low noise and small pixels (often less than 10
x 10 pm?). Two main configurations of the CCD detectors have to be distinguished: one-
dimensional layouts with a linear array of several independent detectors and two-dimensional
layouts that are composed of a mosaic of multiple detectors. Instruments with a linear de-
tector configuration are so-called pushbroom sensors (Fig. 2.2(c)). Fig. 2.2(b) shows the
linear CCD detector configuration of the Pléiades High Resolution (PHR) instrument of the
Pléiades satellites while Fig. 2.2(a) shows the entire camera. Pushbroom detector layouts are
also used in airborne sensors like the Leica ADS40 (Fig. 2.3(a)). An example for a detector
composed of CCD mosaics, called frame camera, is the airborne sensor Vexcel ULTRACAM x
(Fig. 2.3(b)).

For pushbroom scanning, a 2D image is created by moving a 1D line of p detectors over
ground at high speed (Fig. 2.3(c)). In other words, the second dimension actually results
from the fast forward motion. A linear CCD detector is situated perpendicularly to the
velocity vector of the sensor. The time Tj, the sensor needs to pass over a pixel of size
dzg4 (ground sample distance) on the ground, depends on its velocity on the ground V,
(T, = %) For example, the HRG imaging instrument on board of the SPOT5 satellite,
flying at an altitude of 832 km, samples 12,000 pixels every 5 m on the ground ( 6.5 um
pixel size in the focal plane) within 0.75 ms at a ground speed of 6.7 km/s [Assemat et al.,
2005]. In order to enhance the ground sample distance, the SPOT)5 satellite actually has two
lines of CCD detectors. The second detector line is shifted by half a pixel thus decreasing

the ground sample distance to 2.5 m. Frame camera images include p columns and n rows
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Figure 2.2: (a) The layout of the Pléiades High Resolution (PHR) instrument with a primary
mirror size of 650 mm (© CNES), (b) The focal plane assembly of the PHR
instrument (© CNES), (c¢) Imaging principle of a satellite pushbroom line scanner
[Fraser, 2007b|

Figure 2.3: (a) The airborne digital sensor Leica ADS40 2nd Generation is a line scanner ((©
Leica), (b) The airborne digital sensor Vexcel ULTRACAM x captures the light
with a CCD mosaic of 13 arrays, 9 pan-chromatic and 4 color arrays ((©) Vexcel),
(c) Imaging principle of the Leica pushbroom line scanner ((© Leica)

of usually multiple CCD arrays. All columns are oriented in flight direction (parallel to the
velocity vector) whereas the rows are oriented perpendicularly. Like amateur cameras, remote
sensing cameras need a certain exposure time in order to capture images. This exposure time
Te has to be smaller than the time 7; the sensor needs to pass over the pixel on the ground.
Between two successive image exposure centers there is a time delay Ty. It is used to read
and to transfer the image which is still contained in the n - p registers of the CCD mosaic.
For very high spatial resolution images the possible exposure time decreases due two low

charge integration times of the CCD arrays. Smear effects can occur because T, becomes
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2 Theoretical Background

greater than T;. Two different techniques exist in order to compensate for the smear effect.
Their goal is to always keep the observed point on the ground immobile in the focal plane
during exposure. The first possibility is to mechanically correct for the sensor motion. On
some satellites a moving mirror is located near the perspective center and the CCD detectors
capture only light reflected into the instrument by the mirror. This mirror compensates the
satellite forward motion by slightly rotating backwards , i.e. in the opposite direction of the
velocity vector during exposure. The second technique corrects the smear effect electronically
within the CCD array. Charges within the CCD array are transferred to the neighboring row
n in the direction opposed to the flight direction. The velocity of this charge transfer has
to be synchronized with the actual sensor velocity. For airborne sensors the velocity is
measured with navigational equipment, in particular with GPS. The parameters for satellites
are derived from the orbit parameters which themselves are constantly refined using GPS
and startracker measurements. The trajectory of satellites can be approximated locally very
well with a Keplerian orbit. However, satellites are equipped with solar panels which are
automatically adjusted with small electric motors from time to time. This adjustment results
in small attitude changes of the platform and in micro-vibrations which can not completely
be measured. Thus, the reduction of these residuals introduced to the images has to be
conducted during post processing. Airborne sensors are exposed to more severe and abrupt
attitude changes than satellites. Due to permanent turbulences in the air, the aircraft shows
roll, pitch and yaw motions. The amplitude and frequency of such attitude changes is directly
related to the turbulences in the atmosphere. Hence, attitude changes along the three axis of
the sensor have to be measured continuously deploying an inertial measurement unit (IMU).
These high frequency measurements are complementary to the rather low frequency GPS
measurements. IMU measurements fill the gap between the GPS positions. However, GPS
provides a much better long term stability than the IMU. Usually, an approach based on
Kalman filtering is applied in order to combine both IMU and GPS measurements. Thus,
the IMU drift is corrected with the very stable GPS data. However, very high frequency
turbulences due to thermal lift, in particular above urban areas, cannot be measured directly
and would result in image distortions. This effect can be prevented by installing the sensor

on a gyro stabilized platform which corrects for high frequency attitude changes in real time.

Besides image distortions due to the sensor motion, further distortions have to be con-
sidered: small errors are introduced by its optics, mainly decentering distortion (dzg;st—q,
dygist—q) and radial lens distortion (dzgist—r, dygisi—r) (refer to Annex C for the correspond-
ing equations), distorsions of the focal plane (dTun fiatness, @Yun flatness), €rrors in the interior
orientation elements (dz;o, dyro), atmospheric refraction (da,efraction, @Yrefraction) and the

earth curvature (dZeartheurvatures Weartheurvature) [Fraser, 2007a]. Decentering effects are due
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2.2 Optical Imagery

to lenses that are not symmetrically mounted on a straight line. The radial lens distortion,
usually small but typical for wide angle airborne cameras, results in either barrel distortion

or pincushion distortion (Fig. 2.4) of the image.

Image

Objeet ‘ = = ﬂ

(a) (b)

Figure 2.4: (a) Object, (b) Barrel distortion, (c¢) Pincushion distortion

Focal plane unflatness effects in CCD arrays, although usually small, lead to displacement
effects of image points and have to be accounted for. Calibration of the sensor may not
always be conducted under laboratory conditions because the focal plane assembly of some
digital frame cameras consisting of several 2D CCD arrays becomes unstable under flight
conditions [Jacobsen, 2007|. This distortion is highly correlated with residuals in the interior
orientation parameters. In case of the classical frame camera the parameters of the interior
orientation are the offset of the principle point from the CCD array center (dz,dy) in the
image plane and the focal length (f). Atmospheric refraction occurs because light follows
a curved path as it passes through layers of different atmospheric pressure. The refraction
correction is radially inwards for near-vertical airborne sensors. It is made based on a standard
atmosphere for both airborne and spaceborne sensors. Earth curvature has to be corrected
for if the swath width of the sensor becomes significantly large and non-cartesian reference
coordinate systems (e.g. UTM) are used. All previously described physical deviations from
a straight line between the object point, the perspective center and the principle point of
the sensor give rise to a perturbation (dz, dy) in the image point location. The correction
for these perturbations is modelled with Eq. 2.2. Refer to [Fraser, 2007a] for the detailed

calculation of the perturbations.

dx = dwdistfr + dwdistfd + de'IO + dwunflatness + dxrefraction + dxearthcurvature (2 2)

dy = dydistfr + dydistfd + dyIO + dyunflatness + dyrefraction + dyearthcm“vature

Although airborne and spaceborne sensors show many similarities, important differences

exist. The main difference between airborne and spaceborne optical sensors is their field of
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view. It depends on the size of the CCD array in the focal plane and the focal length. In
order to capture images from space with a reasonably high resolution, the focal length is
chosen very long and hence the field of view is small. For example, the IKONOS satellite
launched in 1999 has a field of view of 0,9°. In consequence, the light rays captured by the
spaceborne sensor are almost parallel which leads to less occluded areas in cities. In other
words, the spaceborne sensor can look down to the street level next to skyscrapers whereas

airborne sensors will only see the building facades.

2.2.2 Properties of Optical Imagery

One of the inputs for this project is a digital, optical, grey scale image. It can be interpreted
as a simple matrix, which represents the grey levels of a scene. In Fig. 2.5 we can clearly
see that each grey value of the image actually is a digital number within the matrix. Due to
quantization, this grey value is always an approximation of the radiometry. Its spatial location
is provided by the image coordinates (z, y) of the matrix element (pixel). In mathematical
terms we can say that an image consists of a regularly sampled two-dimensional function. It
provides a value proportional to the brightness emitted by the scene for each sample point
|Assemat et al., 2005].

6L | 72| 58 | 111]130127
21 [101]104| 85 | 103|198
111} 50 | 75 | 77 | 187|215
Ol | 73 | 83 | 48 | 173|223
78 | 120|103 | 108 | 112 156
90 | 187|148 | 101| 97 | 123

Figure 2.5: Image matrix of a grey scale image (grey values between 0 and 255)

The brightness of a pixel displays the reflectivity of an object on the ground in the spectral
band of the sensor. Most sensors are capable of capturing data in several spectral bands (see
also 2.2.1). Each band can be displayed as an own two-dimensional image. Therein, any pixel
is assigned a reflectivity value of the corresponding wavelength. Hence, images captured by
sensors with multiple spectral bands may consist of several layers of subimages (which do
not necessarely have the same pixel size). The curve of the reflectivity magnitude of objects
over the entire spectrum is called their spectral signature. It is distinct for many land cover
types and thus very useful for classification purposes. In order to specify certain criteria for
image product requirements, a number of standard, quantifiable quality measures for optical

imagery are necessary. They ensure that an image product meets user needs. In terms of
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2.2 Optical Imagery

resolution, three different categories exist for evaluating digital imagery: the spectral, the
spatial and the radiometric resolution. The spectral resolution is the ability of the sensor to
discriminate different wavelengths of the electro-magnetic spectrum. It incorporates both the
number of spectral bands as well as the corresponding spectral bandwidths. Spatial resolution
describes the smallest angular or linear object separation on the ground that can be resolved.
This measure has to be carefully distinguished from the ground sample distance (GSD) which
is the size of an image pixel projected onto the ground. In fact, the spatial resolution can be
higher than the GSD since interpolation techniques enable subpixel resolution. Additionally,
bright features that are much smaller than the GSD may spread over one or several pixels.
Another important quality descriptor is the radiometric resolution. It measures the sensitivity
to differences in signal strength of the radiant flux received by the sensor [Fraser, 2007b|. For
example, within a panchromatic image the sensitivity translates to the number of grey levels
between black and white. Another important quality measure related to radiometry is the
noise level. It is the ability of the sensor to obtain a uniform image for a uniform landscape.
For cartographic mapping purposes, planimetric and elevation accuracy of the imagery are

also important.

In order to achieve high quality images in terms of geometry and radiometry, much at-
tention has to be paid to its generation. A mathematical model is introduced in order to
prevent disturbing effects, e.g. aliasing. The appropriate model varies with the sensor it
is applied to. The linear model briefly outlined in the following was developed for imagery
taken by the French SPOT1 - SPOT4 satellites (refer to [Assemat et al., 2005] for a more
detailed description). The raw image captured by a SPOT satellite is assumed to consist of
two summands, the ideal image folded with a filter modelling the sensor device (the so-called
instrument’s impulse response) and noise. A two-dimensional Dirac comb discretizes the con-
tinuous input signal. The discrete image is transfered to a spectral representation involving
a Fourier transform of the raw image. A Fourier transform is also applied to the instrument’s
impulse response, which is then called a Modulation Transfer Function (MTF). The MTF
expresses the attenuation factor for spatial frequencies of the imaged scene on the ground.
In order to capture high spatial frequencies, the MTF has to be high. In case the MTF is
too low, undersampling of the image occurs. Three main parameters have to be specified
for the entire mathematical model: One geometric parameter, the sampling grid, and two
radiometric parameters, the MTF and noise. The sampling interval of the orthogonal grid is
the product of the satellite’s velocity on the ground and the sampling time (see also section
2.2.1) and the noise is specified in terms of the mean signal-to-noise ratio (SNR). The MTF
is defined as the product of the optics MTF, the detector MTF and the image motion MTF

along a column (which is parallel to the velocity vector).
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2 Theoretical Background

2.3 Radar Imagery

This section will first explain the basic radar theory for the detection of targets as well as
the fundamentals of imaging radar sensors (section 2.3.1). The development of the Synthetic
Aperture Radar (SAR) technique led to a significant improvement of the resolution in azimuth
direction of imaging radar sensors (2.3.2). However, the SAR technique incorporates some
constraints which have to be taken into consideration when analysing such images. Radar

sensor properties and SAR characteristics in particular will be explained in section 2.3.3.

2.3.1 Radar Principle

The acronym radar stands for Radio Detection and Ranging. It was originally developed
by the military for the detection of ships and aircrafts. First radar developments date back
to the time between the first and the second world war. Radar enables the detection of
the direction of an object in relation to the radar sensor as well as the range between the
radar sensor and the object. Hence, the position of an object detected by a radar sensor
can be determined if the position of the sensor itself is known with sufficient accuracy. The
radar usually deploys electro-magnetic waves in a frequency band of 0.225 GHz to 36.0 GHz
which translates to wavelengths between 133 ¢cm and 0.83 c¢cm (refer to Tab. 2.2 for radar
frequency bands). However, radar sensors for particular applications with lower frequencies

(e.g. over-the-horizon coastal radar systems, 3 - 30 MHz) or higher frequencies exist.

Band | Frequency Interval | Wavelength
0.225 - 0.390 GHz | 133 - 76.9 cm
0.39-155GHz | 76.9 - 19.3 cm
1.55 - 4.20 GHz 19.3-7.1 cm
4.20 - 5.75 GHz 7.1-52cm
5.75 - 10.90 GHz 52 -2.7cm
10.90 - 22.0 GHz | 2.7-1.36 cm
22.0-36.0 GHz | 1.36 - 0.83 cm

BBNOODH“U

Table 2.2: Radar frequency bands

Radar sensors have two main advantages compared to optical sensors. The first advantage
is the longer wavelength of the radar, which enables ground imaging even through dense
cloud coverage. The second advantage is the radar’s capability of collecting data at both day
and night time. Radar sensors, emitting and receiving signals, are called "active". Optical
sensors capture the ground reflection of the sun light and are called "passive" sensors. Thus,
optical sensors are only capable of capturing meaningful data at daytime while radar sensors

are daylight independent.
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#% Ground Range

B B

Figure 2.6: Principle of Side Looking Airborne Radar (SLAR) (© Institut fiir Photogram-
metrie (ifp), Universitét Stuttgart)

While the first applications consisted of target detection for military applications, first
imaging radar sensors were introduced in the 1950s. Radar with real aperture (RAR) was
installed on aerial platforms for mapping purposes. This technique is called Side Looking
Airborne Radar (SLAR), since the sensor is installed on one side of the aircraft (Fig. 2.6).
The SLAR signal consists of a series of short, coherent micro-wave pulses, transmitted aslant
to the ground, perpendicularly to the flight direction. The signal reflections from the ground
are captured by the sensor. Thus, the distance between sensor and object (slant range) is
determined by multiplying the time of flight of the signal with the speed of light. It has
to be halfed since the signal propagates forth and back the same distance. The power of
the backscattered signal depends on the sensor design, the backscattering properties of the

object (geometric shape, directivity, reflectivity) and the radar equation (Eq. 2.3).

Ps-G%?- )\ .o
Pr=—FF—F—7 2.3
B np 1 L, (23)
Py received power [W] A: wavelength [m]
Pg: transmitted power [W] o: radar cross section [m?]
G: antenna gain of the receiving antenna [dB] r: range distance [mQ]

Ly : dimensionless factor subsumming the overall system loss

The time of flight of the signal and its intensity are captured by the sensor. The time of
flight determines the distance whereas the intensity leads to the image grey value. Length,

width and orientation of the imaged area on the ground depend on the antennas position
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2 Theoretical Background

and orientation as well as on the transmission direction of the micro-waves. The transmission
direction varies due to roll, pitch and yaw motions of the sensor platform (aircraft or satellite).
The geometric resolution of a radar sensor is usually anisotropic. With resolution, we mean
the minimal distance between two objects on the ground that still allows for their distinction.
The resolution in flight direction (along-track, azimuth resolution) differs from the resolution
perpendicular to the flight direction (across-track, range resolution). The geometric slant
range resolution dy. depends on the duration of the transmitted pulse 7 and the speed of
light ¢ (Eq. 2.4). The pulse duration itself derives from the signal’s bandwidth B. The
geometric resolution dg on the ground depends on ¢, 7 and on the local look angle 07, (Eq.
2.5).

Slant Range (Distance)

Ground NearRange  Ground Range cr | Far Range

2sin 6,

Figure 2.7: Across-track resolution of a RAR sensor; d: antenna length, h: altitude of the
sensor, A: wavelength and \/h: angular resolution

CT C
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= 2.
O 2sindy, (2:5)

Regarding Fig. 2.7, it becomes obvious that the ground range resolution degrades by mov-
ing the sensor’s inclination to the nadir (decreasing look angle). A more aslant perspective
improves the ground resolution. Usually, the across-track diffraction angle (in elevation di-
rection) is chosen large in order to achieve an enhanced swath width. On the other hand,
the angular resolution 6, in along-track (azimuth) direction is chosen very small because it
leads to the corresponding ground resolution. The geometric ground resolution in azimuth
direction can be approximated by multiplying 6, with the distance to the imaged object (Eq.
2.6).
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50 = OuR ~ %R (2.6)

Therefore, an enhancement of the geometric ground resolution in azimuth direction with
a RAR sensor requires a small wavelength and a long antenna. Additionally, the very long
distance between sensor and object, in particular for spaceborne sensors, calls for extremely
long antennas in order to achieve a sufficient resolution. However, neither the construction of
infinitely long antennas (the spacecraft limits the satellites extent and weight) nor infinitely
small wavelengths (a smaller wavelength increases the losses within the atmosphere) are
possible. Hence, another radar technique is usually used for high resolution Earth imaging
applications: Synthetic Aperture Radar (SAR).

2.3.2 SAR Technique

The SAR technique improves the spatial resolution in azimuth direction. It is based on the
idea of simulating one large antenna out of several measurements. Measurements are taken
along the trajectory of the sensor with a certain pulse repetition frequency (PRF). Multiple
radar pulses are emitted and received. Hence, an object on the ground is illuminated by
multiple radar pulses as long as it is located inside the footprint of the sensor. The reflected
pulses, send from different antenna positions at different moments, are combined for the
simulation of one long antenna. This is a contrast to the RAR approach. The RAR technique
considers a ground object to be illuminated only once. No combination of the reflected
pulses is conducted. In fact, the length of the synthesized SAR antenna equals the distance
between the first and the last antenna position from which a ground object is illuminated.
The mathematical model, well explaining the synthesis of one long antenna, is based on the
Doppler shift fp (Eq. 2.7).

2 Vpeg
A

A Doppler shift between different sensor antenna positions occurs. It is due to the change

fp=4% (2.7)

of the relative velocity along the line-of-sight v,.; between antenna and object. v, changes
because the distance between sensor and object changes whereas the absolute sensor velocity
is constant. In fact, the distance curve is a parabola. Its apex is located at the shortest
distance g between sensor and object. This also is the point of the lowest relative velocity,
i.e. the Doppler frequency is zero fpg. In order to combine all radar echos for the synthesis
of one long antenna, the distance variation has to be accounted for. This goal is achieved
by evaluating the Doppler shift. The great advantage of SAR over RAR is the SAR’s im-

proved spatial azimuth resolution. In contrast to RAR, it is completely independent from
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the sensors distance to an object and its wavelength (compare Eq. 2.6 and Eq. 2.8). It can

be approximated by the half length D of the synthesized antenna:

D

5SARaz - E (28)

As a matter of fact, the azimuth resolution of SAR improves with increasing antenna length
D whereas the RAR’s azimuth resolution deteriorates. The SAR signal u itself is complex
and consists of a real part u; and an imaginary part u, (Eq. 2.9). Both complex components
may be displayed as cartesian coordinates of the signal (Fig. 2.8). Additionally, the pixel
value of a SAR image is the sum of multiple coherent signal reflections on the ground (Eq.
2.10). Various independent scatterers within one resolution cell contribute to the final signal
received by the sensor [Goodman, 1985; Sorgel, 2006]. The fact that the pixel value is the
coherent sum of a large number of complex signals also leads to the speckle effect. It is

described in further detail in the following section 2.3.3.
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Figure 2.8: Complex cartesian representation of the SAR signal

u = u; + Jug (2.9)
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u; = Re{u} = N Z ancosen , ug=Im{u} = N Zansinqﬁn (2.10)
n=1

n=1
In order to model SAR images appropriately, e.g. for classification purposes, the image
statistics have to be well understood. Statistics of singlelook intensity images follow an
exponential distribution. Multilook intensity images are y?-distributed. This is not the case
for amplitude images. Singlelook amplitude images are Rayleigh distributed while multilook

images follow a y-distribution.
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2.3.3 Properties of SAR Imagery

SAR images have certain properties that may cause difficulties during image analysis for
unexperienced interpreters. A mapping of a plane from the ground to the image is non-linear
[Sorgel, 2003] since the radar principle consists of measuring distances between the sensor
and the object (Fig. 2.9(a)). For human interpreters this fact appears somehow disturbing
at first because it does not correspond to our eye perception. The radar principle of distance

measures causes layover, shadowing and foreshortening effects.

Figure 2.9: (a) Mapping of flat ground, (b) Layover

Layover appears if the inclination of a plane is higher than the look angle of the radar
sensor (Fig. 2.9(b)). For example, the distance between the highest point of the mountain
(B) and the radar sensor is smaller than the distance between the lowest point (A4) and the
sensor. Hence, the inclination of the plane on the ground is higher than the look angle 6.
The highest point is mapped closer to the sensor (Bj) than the lowest point (A7). This effect
also appears in urban areas at buildings because vertical building facades in general have a
higher inclination than the look angle. In conclusion, the buildings’ facades appear upside
down in the image. The very bright lines (due to double bounce effects of the signal) where
walls meet the ground are mapped onto the roof.

Shadowing occurs if the inclination of a plane facing away from the sensor is bigger than the
corresponding look angle (Fig. 2.10(a)). Point D is not mapped into the radar image since it
is located within a shadowed area. It is occluded by the mountain top B. Shadowed regions
appear dark in radar images. Shadowing poses serious image analysis problems, in particular

in urban areas. An increasing look angle results in more severe shadowing effects, i.e. layover
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Figure 2.10: (a) Shadowing, (b) Foreshortening

declines and the resolution is enhanced. As a trade off, more areas are dark in the image.
In optical imagery objects may also be obstructed by higher objects on the ground due to
a not pure nadir view of the sensor. However, the best resolution in case of optical imagery
is achieved in nadir direction which also results in the least obstructed regions. Hence, in
optical imagery the opposite relation of resolution and occluded regions is valid. This fact is
a very important difference between radar and optical sensors. It constraints both imaging

techniques to certain applications.

The third effect, typical for radar images is foreshortening (Fig. 2.10(b)). It appears
because the ground terrain usually is not flat. Inclined planes facing towards the sensor
are mapped shorter in the image than they appear on the ground. They appear brighter
in the image since the entire energy of the ground area sums up in a relatively small area
in the image [Sorgel, 2003]. Another effect disturbing SAR images is speckle. It appears
because the resolution cell size of the SAR sensor is usually bigger than the wavelength (refer
to Eq. 2.10). Hence, the captured signal intensity within an resolution cell is in fact the
coherent sum of multiple interfering signal responses. In case the ground object’s surface is
rough compared to the wavelength, many signals contribute to the measured overall sum.
This sometimes results in a very high amplitude and in a low amplitude at other locations.
Affected areas show high contrast between neighboring pixels (salt-and-pepper). Additonally,
speckle is distributed non-uniformly. Hence, any kind of image analysis has to consider a
particular statistical speckle and signal model. A detailed description of the speckle filter

chosen for this project is given in chapter 3.4.2.
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The image registration approach of this project applies a general model to the input remote
sensing images. This approach was chosen because precise sensor parameters may not always
be distributed with the images. Instead of modeling each sensor model separately, only
two models are used in total. The first model is applied to all optical sensors while the
second model is taylored for all SAR sensors. Each model is set up in order to account for
both aerial and spaceborne sensors. This fact implies that both models are not capable of
geometrically rectifying all existing sensors with equal precision. Obviously, residuals will
always rest if such different sensors as e.g. pushbroom and frame optical sensors are treated
with an identical geometric model. Therefore, residuals remaining after the first registration
step are treated in the following component. Hence, the registration precision is refined
graduately. This chapter introduces the entire image processing chain. Its final result is a
deformed SAR image, registered onto the optical image. The first section of this chapter
(3.1) introduces the test data. Then, section 3.4 outlines the complete registration strategy.
It gives an overview of all necessary computation steps for the final goal of fused images.
The following sections describe the processing that is needed in order to prepare for feature
extraction. Geometric distortions have to be accounted for first. This image rectification step
is explained in detail in section 3.3. As soon as the images have been projected from camera
space to the ground, preprocessing is carried out. The smoothing and despeckling filters of
choice are described in section 3.4. Thereafter, the optical and the SAR image are sufficiently

prepared for classification and feature extraction, which is explained in the following chapter

(4).

3.1 Test Data

Images from airborne platforms are used as test data. Our developed registration strategy is
tested on two images, one optical and one SAR image. Both images cover approximately the
same area. They were captured over an industrial zone of the city of Dunkerque in the north
of France. The optical image was taken with an airborne sensor of the Institut Géographique
National France (IGN). Its spatial resolution (pixel size on the ground) is about 0.3 m and
its original size is 3033 by 2559 pixels (Fig. 3.1(a)).
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Figure 3.1: (a) Optical aerial image taken by IGN (© IGN), (b) SAR aerial image in slant
range geometry taken by ONERA with the RAMSES sensor in X-Band (©) DGA)

The SAR image was taken by the French Aerospace Lab (ONERA) in X-Band (Fig. 3.1(b)).
It was captured with the airborne SAR sensor RAMSES and thus is courtesy of the French
Délégation Générale pour I’Armement (DGA). Its original size is 2048x2048 pixels. The real
part Re and the imaginary part Im of the signal were separately registered in two different
layers of a layer stack image. In order to visualize the SAR image as a grey value image,
it is possible to either compute intensity values (Eq. 3.2), amplitude values (Eq. 3.1) or
decibel values. The intensity image is exponentially distributed (Fig. 3.2(b)). It has the
disadvantage that the actuarial expectation E [I] of the image intensity equals its variance
o (I). Hence, the speckle effect has a strong and multiplicative impact on the image. The

amplitude image shows a Rayleigh Distribution of its grey values (Fig. 3.2(a)).

A =/ Re?+ Im? (3.1)

I = Re? + I'm? (3.2)
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Figure 3.2: (a) Rayleigh distribution of the SAR amplitude, (b) Exponential distribution of
the SAR intensity for two different actuarial expectations

SAR Image Minimum | Maximum | Mean Std. Dev.
Before rescaling | 0.000057 261.29 0.341369 | 0.969359
After rescaling 0 255 53.3 55.7

Table 3.1: Parameters of the SAR amplitude image Fig. 3.1(b) before and after rescaling

However, the resulting amplitude image showed a very large dynamic range (more than 40
dB) of the grey values, compared to the optical one. Most regions of interest were displayed
with extremely low contrast almost black (see Tab. 3.1). Hence, thresholding and rescaling of
the SAR amplitude image were conducted. In order to determine the appropriate threshold,
the next step was to calculate mean and standard deviation of the amplitude image. All
amplitude values above the mean plus the standard deviation were thresholded. Pixel grey
values above the threshold were set to the threshold itself. Thereafter, the image was linearly
rescaled (between 0 and 255). The resulting amplitude image (Fig. 3.1(b)) shows sufficiently
contrast and thus facilitates interpretation. Both images were found to be too large for
testing purposes because the implemented algorithms would have been computationally too
expensive. None the less, such algorithms can be optimized for treating very large images
under operational circumstances. However, this was not in the focus of this project. Hence,
two smaller regions were extracted (Fig. 3.3(a) and 3.3(b)). The optical test region has a size
of 750 by 736 pixels whereas the SAR test regions’ size is 990 by 920 pixels. All implemented

algorithms were tested on these two regions.
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3 Image Registration

Figure 3.3: (a) Test region of the optical image, (b) Test region of the SAR image

3.2 Registration Strategy

The developed registration strategy is displayed in Fig. 3.4. Its main idea is to register
corresponding features that are extracted from both the optical and the SAR image. Feature
extraction is necessary because we deal with very high resolution imagery. Different imaging
properties of the sensors develop their full extent. Hence, fine details look very different in
the optical and in the SAR image. Classical approaches based on pixel level, e.g. normalized
cross-correlation, were developed for the direct registration of rather low resolution images.
Usually, those approaches also require images taken by the same kind of sensor. They will fail
to provide subpixel registration accuracy in our case of multi-modality imagery because the
images do hardly show any similarity. Line features enable good registration results because
our images cover an urban area. Due to man-made structures like roads and buildings, they
can be found in high quantities. The first part of the registration strategy thus consists of
preparing the images for feature extraction and line extraction. Optical and SAR image are
treated separately during ortho-rectification, preprocessing, classification, feature extraction
and the computation of distance images. Thereafter, the second part treats both images
jointly. The SAR image is registered onto the optical image deploying an algorithm provided
by the open source software library ITK (National Library of Medicine Insight Segmentation
and Registration Toolkit)!.

'see the ITK webpage http://uww.itk.org
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Figure 3.4: Image registration strategy

1. The first registration step consists of an ortho-rectification of both optical and SAR
image (section 3.3). Both images are projected from sensor space to object space. An
external digital elevation model (DEM) is used in order to rectify distortions introduced
by the terrain. Objects included in the DEM are rectified whereas objects which are
not included stay distorted, in particular buildings. The transformations also account

for sensor specific residuals.

2. The second registration step applies appropriate preprocessing filters to the rectified
images (section 3.4). This registration component reduces the noise level and prepares
the images for further image analysis. An anisotropic diffusion filter is applied to the
optical image. For despeckling reasons, the SAR image is filtered with the Frost filter
[Frost et al., 1982] (section 3.4.2).

3. The third image registration component applies a classification to both images (sections
4.1 and 4.2). It distinguishes between rectified ground regions and unrectified buildings.
This step is necessary because only rectified areas of the images can be considered for

the registration of the images.
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3 Image Registration

4. After all rectified image regions have been identified, features are extracted (chapter 4).
The outcome of this fourth registration step are two images displaying the extracted

features.

5. Distance images are calculated from the feature images in the fifth registration compo-

nent (section 4.5). They are registered using the ITK registration framework.

6. The ITK registration framework’s architecture is modular (section 5.1). It calls for
a particular combination of metric, transform, optimizer and interpolator in order to

adapt it to the input images.

7. After convergence of the registration towards an optimal solution, the final registration

parameters are used to register the SAR image onto the optical image.

3.3 Geometric Deformation Modelling

Modelling has to be conducted in order to account for the different viewing geometries of SAR
and optical sensors (Fig. 3.5). Distortions due to the terrain have to be taken care of, too.
Both images are projected from sensor space to the ground as a first geometric registration
step. A general a priori model-based approach was chosen, capable of rectifying the images
without in depth knowledge of sensor parameters. However, current work also comprises the
integration of the software library OSSIM into OTB. Once integrated, OSSIM will enable
the usage of the precise geometric sensor model for each sensor. An external DEM is used to

reduce distortions introduced by rough terrain.

CoBo A
Optical Image Fiduig

(Focal Plane) V
Principle

Point

SAR Antenna

Ground Imaged Ground Area

Figure 3.5: Comparison of optical and SAR viewing geometry
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3.3 Geometric Deformation Modelling

3.3.1 Geometric Optical Model

Usually, deformation modelling of residuals due to the particular architecture of the instru-
ments is conducted. However, this registration approach was designed in order to deal with
multiple kinds of sensors (see section 2.2.1). Since knowledge of the particular parameters
of each sensor is lacking, a general geometric sensor model is adapted. In case of optical
imagery, the inverse 3D collinearity equations (object to image) are used in order to project
the image to the ground (Fig. 3.6(a)).

’7‘11*(X—Xc)+7‘21*(Y—Yc)+T31*(Z—Zc)
’)"13*(X—Xc')+7‘23*(Y—Y0)+7’33*(Z—Zc)

T=x9— f*

Tlg*(X—XC)—|—T22*(Y—YC)+T‘32*(Z—ZC)
Tlg*(X—XC)+T‘23*(Y—YC)+T‘33*(Z—ZC)

y=1yo— fx*

X, Y, and Z are the ground coordinates,

To, Yo, and f are the parameters of the interior orientation of the sensor,

Xc, Yo, and Z¢ are the coordinates of the sensor’s principle point,

r;; are the elements of the rotation matrix at line s and column j. The elements of the

rotation matrix are based on the three rotation angles w, ¢ and k (see Tab. 7.2in 7.2).

Each pixel of the image on the ground is transformed via the previously displayed equations
to the original image. An indirect geometric image transformation for each pixel P(X, Y)
of the ortho-image is conducted (Fig. 3.6(b)). The pixel size of the ortho-image is selected
corresponding to the ground resolution of the sensor. A raster pixel size of the DEM does
not necessarily have to be the same as the ortho-image pixel size. For all raster points of the
ortho-image on the ground, the corresponding height values have to be interpolated within
the DEM. Under the assumption that both interior and exterior orientation are known,
inserting the ground coordinates (X, Y, Z) into the inverse collinearity equations (Eq. 3.3
and Eq. 3.4) will lead to the point P’ in the image with the corresponding image coordinates
(x’, ¥'). The grey value for the pixel of interest in the ortho-image can now be interpolated
in the original unrectified image. This process is known as image resampling. The entire
geometric modelling process is conducted in physical coordinates. The interpolation of the
grey value within the original image in sensor geometry is a simple bilinear interpolation
technique in this case (explained in detail in section 5.3). This rather simple interpolation was
chosen in order to decrease computation time for the testing of the entire algorithm. Much
more sophisticated interpolation methods exist, leading to improved interpolation results.

However, most of them have the disadvantage of being computationally expensive. As soon
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3 Image Registration

as the entire registration process will be fully developed and tested, they will be introduced

(e.g. B-Spline interpolation).

Image
Coordinate
L System
Cartesian Object ye
Coordinate
System

Figure 3.6: (a) Geometric model of the collinearity equations with C' (X¢, Yo, Z¢): perspec-
tive center, P (X, Y, Z): object point, Cp (z¢, yo): principle point, M: center
of the CCD array, (b) Ortho-rectification of the image with a digital elevation
model (DEM) [Heipke, 2007]

Residuals rest although the main distortions due to the terrain are reduced significantly

by the ortho-rectification of the optical image.

e Displacement effects rest because buildings are not included in the DEM which repre-
sents the height of the terrain. These effect could be treated by the introduction of a
DSM, provided from an external source, for example LIDAR. However, LIDAR data
are not widely available. Further research conducted at CNES and IPI will show if an
internal DSM, derived with InSAR techniques from the same SAR data set will lead to

sufficient results in urban areas.

e Errors in the parameters of the interior and exterior orientation have an effect on the
ortho-photo. For example, errors may be introduced by residuals of the ground control
point determination in particular if the exterior orientation is derived from a space

resection.

e Errors of the DEM propagate through to the final ortho-photo. The final accuracy is
almost independent of the sensor if both DEM and ortho-photo are derived from the
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3.3 Geometric Deformation Modelling

same data set. However, in case the DEM and the rectified image are derived from
different data sets or even different types of sensors (e.g. LIDAR and optical aerial

imagery) residuals rest in the DEM.

e The approximation of the curved surface by a raster leads to residuals in particular in

case of high frequency curvature of the terrain.

3.3.2 Geometric SAR Model

The SAR image is projected to the ground with the inverse equations from |Toutin et al.,
1992], originally derived from the collinearity equations. This approach models the residual
errors still present after the image has been generated from raw data. For example, resid-
uals rest in the estimation of slant range, Doppler frequency, ephemeris and the ellipsoid.
It incorporates three different models: the motion model, the sensor model and the earth
model. Hence, three coordinate systems are used: the image coordinate system, the inter-
mediate coordinate system and the ground cartographic coordinate system. The first step is
a transformation of the ground coordinates to the intermediate coordinate system. It simply
applies one translation and one rotation. Furthermore, the coordinates of the intermediate
system (z,y,h) are transformed to the image coordinates (p,q) with the equations shown

below. Image coordinate p corresponds to the azimuth while ¢ corresponds to the distance.

—y*x(1+oyxX)+7xh
p= 4l 713 ) (3.5)
v _ Bxh
cosx
q= (3.6)
a*(Q—i—H*X—COZX)
h 2
X =(z—axy)x 1+F +bxy +cxxzxy+dhxh (3.7)
0

e with Ny, the normal distance between the sensor and the ellipsoid,

e q, a function of the non-perpendicularity of axes,

e «, the field-of-view of an image pixel,

e P, a scaling factor in along-track direction,

e (), a scaling factor in across-track direction,

e 7 and 6, functions of the leveling angles in along-track and across-track direction,

e b, ¢ x, 07, and dh, second order parameters.
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3 Image Registration

This approach was found appropriate because it implies several desirable properties. It
models the complete viewing geometry of the sensor and works with both ground control
points and a DEM. In contrast to polynomial rectification methods, all variables and factors
are directly related to physical quantities. As a matter of fact, parameters, which translate
directly to physical properties of the sensor, make the equations somehow easier understand-

able and interpretable. Appropriate parameter values may be found quite easily.

3.4 Image Preprocessing

In order to reduce the noise level and the speckle, SAR and optical images first have to
be processed with edge preserving smoothing filters. This step facilitates the extraction of
lines, contours and regions. Reconsider, that lines will be the input to the following image
registration because the very high image resolution prohibits pixel based fusion techniques.
Preparing the images for further processing is crucial, since high quality image smoothing is

necessary for feature extraction algorithms. It depends on three major constraints.

e Since both geometric and radiometric properties of SAR and optical sensors are dif-
ferent, applying the same smoothing filter to both SAR and optical images results
in insufficient outcomes. Images captured by different sensors hence call for adapted

smoothing filters.

e The desired image analysis strategy has an impact on the choice of the preprocessing
algorithm. For example, edge preserving smoothing filters have to be used if line
detection algorithms are applied to the image in further processing steps. In case of
the application of mutual information techniques to the image, edge preservation may
not be necessary. Therefore, faster to compute filtering techniques (e.g. mean, median)

can be applied.

e Preprocessing has to be tailored to fit the type of scene displayed in the imagery, too.
Dense urban areas with lots of metallic features result in a higher dynamic range due
to more frequent dominant scattering than agricultural scenes. Hence, the filtering

parameters have to be adjusted carefully for each image.

3.4.1 Preprocessing of Optical Imagery

For the optical image, an anisotropic diffusion filter, already existing in OTB, was chosen.
This filter implements an N-dimensional version of the anisotropic diffusion equation for
scalar-valued images proposed by [Perona and Malik, 1990]|. The basic idea is derived from

nature. Natural surfaces are composed hierarchically of a small discrete number of scale
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3.4 Image Preprocessing

levels. For example, a coarse scale would be an entire forest. The next step in scale-space
would be a particular tree, the following steps a branch, a leaf, the substructure of the leaf
etc.. The translation of this scale-space technique to our case in imagery is: the original
image I (z,y) is embedded in a set of derived images I(z,y,t). This set has been derived by
convolving the original image with a Gaussian kernel G(z,y;t). t is the chosen variance of
the Gaussian kernel. The greater the variance becomes, the smoother the image and thus

the coarser the resolution.

(b)

Figure 3.7: (a) Test region of the original optical image, (b) The optical image after prepro-
cessing with the anisotropic diffusion filter

I (zayat) = Iy (I’y) * G (CC, Y; t) (38)

Three criteria must be met [Perona and Malik, 1990|:

1. Any feature at a coarse level of resolution is required to have a cause at a finer level of

resolution.

2. The region boundaries should be sharp at any level of resolution. Additionally, they

should always coincide with semantically meaningful boundaries.

3. Intraregion smoothing should always occur previously to interregion smoothing at all
scales. Regarding the tree example previously introduced, branches merge to a tree

and trees merge to a forest. No branches merge directly to make up the forest.
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3 Image Registration

The main issue is that Gaussian smoothing does not consider region boundaries. Hence,
region boundaries have to be estimated. A variable conductance coefficient is introduced to
set smoothing at region boundaries to zero and inside regions to one. This conductance term
was chosen as a function of the gradient magnitude of the optical image i.e. region boundaries
are estimated from the gradient image. Fig. 3.7(b) shows the optical image as shown in Fig.

3.7(a) after smoothing has been conducted with the anisotropic diffusion filter.

3.4.2 Preprocessing of SAR Imagery

In SAR imagery, both noise reduction and the treatment of the speckle effect takes place.
The speckle effect causes severe perturbations within SAR images (refer to section 2.3.3 for
the theory of speckle). First and foremost, it prevents the direct application of optical image
analysis algorithms to SAR images. Thus, specific algorithms, which take into account the
physical nature of SAR images, have to be developed. In order to prepare for image analysis,
e.g. feature extraction, the speckle effect is reduced as far as possible. Although our line
extraction algorithm (see details in section 4.4) was specifically developed for SAR images, it
seemns to provide improved results on despeckled images. For good line detection results, the
preservation of edges by the anti-speckling filter is imperative. Edges separate image regions
and therefore may also be thought of as region boundaries. Hence, a filter has to be chosen
that does not smooth the image globally across such region boundaries. An approach has
to be found which restricts smoothing to rather homogenous regiones. Local statistics (e.g.
mean, standard deviation) and texture parameters (e.g. contrast, entropy) can be calculated
within the filter matrix for deciding whether a pixel belongs to a region or not. A filter that
takes into account local properties of an image in order to fine tune its parameters is called
adaptive. It is desireable to apply such an adaptive filter to the image for edge preservation.
Hence, edge preserving speckle reduction was conducted with the Frost filter [Frost et al.,
1982]. The input image from Fig. 3.8(a), after the application of the Frost filter, is displayed
in Fig. 3.8(b).

This filter is adaptive because it considers the local mean and the local standard deviation
of the input image. In other words, the Frost filter smoothes inside regions and not across
region boundaries (like the anisotropic diffusion filter). It applies an exponential weight
factor, which depends on the local statistics, in order to adjust the smoothing. This is a
difference to the Lee filter [Lee, 1981], which does not use such a weight factor. Therefore,
the Frost filter preserves edges better than the Lee filter. The Frost filter considers the
desired information, the terrain backscatter r(z,y) (the ideal image we want to estimate), to
be multiplied (i.e. to be perturbed) with a stationary random process n(z,y) (the speckle
effect). Equation 3.9 displays the relation previously described. Additionaly, it integrates a
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3.4 Image Preprocessing

Figure 3.8: (a) Test region of the original SAR image, (b) The SAR image test region after
the entire original SAR image was Frost filtered

third function h(z,y) (the operator * describes convolution). This third function expresses
the spatial correlation of pixel values introduced by the SAR system components such as the

antenna and the receiver. I(zr,y) is the observed image.

I(z,y) = [r (z,y) - n(z,y)] «h(z,y) (3.9)

Modelling a SAR image like done by Frost in equation 3.9 is referred to as a multiplicative
speckle model. According to this particular multiplicative speckle model, the Frost filter
minimizes the mean-square error in order to estimate the ideal image r(z,y) from the observed
image I(z,y). The speckle filter always should be applied to the entire original image. Filtering
only an image region would lead to a slightly different outcome. Since the extracted region
shows another mean and standard deviation, the filter would produce another result, too.
Hence, the SAR image of the original size (Fig. 3.1(b)) was Frost filtered. Thereafter, the

test image region (Fig. 3.8) was extracted.
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4 Classification and Feature Extraction

The first step of the image registration strategy was to project the optical and the SAR image
to the ground. Both images were ortho-rectified in order to account for the different sensor
geometries. Distortions due to the terrain are also decreased by this step. Thereafter, the
noise level of the optical image was reduced and the speckle effect of the SAR image was
treated. A classification of both images is the following step described in the first two sections
of this chapter (sections 4.1 and 4.2). The main reason for the introduction of a classification
is that the image fusion has to take place in rectified regions of the images. All objects
both present in the images and the DEM have been rectified. However, objects present in
the image but not in the DEM have not been accounted for. In particular, buildings are
not contained within a DEM, i.e. buildings in the images stay distorted. Hence, we have
to distinguish between buildings and the ground in order to register the images only on the
rectified ground level. Registering the images in building regions would immediately lead to
severe perturbations. Additionally, a classification will prove to be useful for the following
feature extraction and the final registration. For example, very bright lines in the SAR
images are one additional class besides the two main classes roof and ground. Such bright
lines often result from double bounce effects of the radar signal. It usually occurs where the
walls of buildings meet the ground. Thus, we know that these bright lines are on ground
level, i.e. they can be used for registration purposes. A large variety of image classification
techniques exists and new approaches are permanently developed. Within this project, we
tested a classification subdivided into two steps. The first classification uses Support Vector
Machines (SVM) for a pixel based classification. Results are refined with a Markov Random

Field classification which is based on global and local image statistics.

After the classification has been accomplished, features are extracted from the images.
Features to be extracted can be regions, lines, or points. Later on, the images will be regis-
tered on feature level. This abstraction from the original images illiminates all radiometrical
differences between the optical and the SAR images. It is necessary because we deal with
images of very high resolution. A classical fusion based on pixel level would fail in our case.
Both, the extraction of point and line features were tested. The point detection within the

SAR images was conducted with the Lopés point detector [Lopés et al., 1993]. However, line
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detection proved to give more promising results and hence this approach was followed. The
line extraction algorithm applied to the optical image is explained in section 4.3 whereas the

one applied to the SAR image is described in section 4.4.

4.1 Classification with Support Vector Machines (SVM)

Support vector machines (SVM) belong to the family of kernel based learning methods. They
deploy learning theory for classification and regression tasks and are a generic tool [Cortes
and Vapnik, 1995]. For example, a first application for SVM was text categorization, a
subject with only a slight relation to image classification. However, within the last few years,
SVM proved to successfully classify remote sensing imagery. This section will give a brief
introduction to SVM classification since classification is only one out of several parts of the
registration strategy. Sources [Schélkopf and Smola, 2002] and [Shawe-Taylor and Cristianini,
2004] are recommanded in order to gain further in depth understanding of kernel methods in

general and SVM in particular.

e Our fundamental problem to be solved within the context of SVM classification is: Two

classes of objects are given and we have to assign a new object to one of the two classes.

e The basic idea to deal with this issue is rather simple and can be imagined in a geometric
way: The particular surface (called hyperplane) in feature space has to be determined

that optimally separates two feature sets derived from the objects (Fig. 4.1).

In the case of imagery the objects are samples taken from the image. The new object
is assigned a class depending on which side of the hyperplane it lies. In order to achieve
optimal separation, the SVM algorithm searches for the subset of training samples which
best describes the optimal surface. The distance of the closest vectors to the hyperplane
is maximized. These are the so-called support vectors and the minimal distance is called
margin [Inglada et al., 2006].

The input for the SVM classification are N samples which are taken from training regions.
These training regions have to be specified by the user within the images we want to classifiy
(see Fig. 4.3(a) and Fig. 4.3(c)). Since the entire classification is based on feature vectors
from the training regions, they have to sufficiently represent the classes we want to distinguish.
The basic version of SVM solves two-class problems and thus the following considerations are
based on a classification into two classes w; and ws. Each single sample taken from a training
region consists of the class label y; with ¢ = 1,2, ..., N and the corresponding feature vector
Z;. The class label y; is either -1 if Z; belongs to wy or +1 if #; belongs to we. The feature

vector Z; consists of real numbers and has the dimension n. The dimension n depends on
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. vectors
. support vectors

. separating hyperplane
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Figure 4.1: Basic principle of a SVM classification of two vector sets in feature space (drawn
after [Tourneret, 2003])

the amount of features the vector incorporates. For our project we used seven statistical and
texture features (n = 7), i.e. each image pixel contains not only one grey-value but a vector

of seven features. The hyperplane has the equation

@-E4+b=0 (4.1)

with its normal vector @ and Z being any point on the hyperplane in feature space. All
feature vectors that are not located directly in the hyperplane do not fulfill equation 4.1
because the left side of the equation is either smaller or greater than zero. Hence, the

classifier function can be written as in equation 4.2.

f(Z,4,b) = sgn (@ - Z+ b) (4.2)

Two new hyperplanes are constructed which are parallel to the optimal separating hyper-
plane. The normal vector « may be interpreted as a weight vector and b can be regarded
as a threshold. They are rescaled such that the left side of equation 4.1 becomes either +1
or -1 (Fig. 4.2). Equation 4.3 expresses this constraint for feature sets which are linearly
separable. In case the feature sets are not linearly separable, the constraints (Eq. 4.3) can

be modified thus generating a soft margin classifier.

wW-Z;+b>+1 if y;=+1
wW-Zi+b< -1 if y;=-1
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Figure 4.2: A binary SVM classification of two vector sets in feature space (drawn after
[Schélkopf and Smola, 2002|); the orthogonal distance between the optimal hy-
perplane and the two red dotted lines is |1 — b| / ||@]| and |—1 — b| / ||@|| respec-
tively; the margin which has to be maximized for optimal separation thus becomes
2/ |1

The goal of SVM is to optimally separate the two feature sets. In order to achieve this
aim the margin of ﬁ has to be maximized. Therefore, / and b have to be rescaled in
order to minimize the expression ; ||@]|%. This minimization task has to fulfill the constraint
yi (W-Z; +b) > 1, i=1, 2,..., N. A so-called constrained optimization problem can be
solved by introducing Lagrange multipliers a; > 0 and the set-up of a Lagrangian L (Eq.
4.4). The Lagrangian L has to be minimized with respect to the primal variables @ and b
and maximized with respect to the dual variables «;. In other words, a saddle point of the
Lagrangian equation has to be found [Scholkopf and Smola, 2002|. It can mathematically be
proven that only the support vectors have positive Lagrangian multipliers «; ([Inglada et al.,
2006], p.225).

N
~ I o
L(@, b &)= 111> = o (yi (- F + b) — 1) (4.4)
im1

While SVM proves to be a powerful tool for classification tasks some drawbacks exist. The
SVM classification was originally developed to solve two class problems. However, in image
classification we usually have more than two classes. Two main theoretical approaches exist
to deal with this issue. The first possibility is to train each single feature set against any other
feature set. Another possibility is to train each feature set against the rest. For this project

the first approach was selected. Another drawback is that the classification is not entirely
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automated because the user has to provide training regions. The quality of the classification
highly depends on the selection of those training regions (Fig. 4.3(a) and Fig. 4.3(c)).
Additionally, the features we use as input have a influence on the result. In our case, an
image stack with several layers is the input for the SVM classification. Each layer is derived
from the original rectified image. Diverse texture parameters as well as stochastic values
were determined in order to achieve a meaningfull classification: mean, median, entropy,
energy, standard deviation, skewness and kurtosis. Refer to Annex B for the corresponding
equations. The classified optical and the classified SAR image are shown in figures 4.3(b)
and 4.3(d) respectively.
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Figure 4.3: (a) Training regions for the SVM algorithm in the optical image, (b) Classification
into five classes (ground, vegetation, roof, shadow, facade) of the optical image,
(¢) Training regions for the SVM algorithm in the SAR image, (d) Classification
into six classes (ground, vegetation, dark roof, light roof, shadow, bright lines) of

the SAR image
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4.2 Classification with Markov Random Fields (MRF)

After the images have been classified with the SVM method, a second classification is nec-
essary in order to refine the SVM results. The SVM technique is a pixel based classification
approach. Vectors for each pixel are first determined and then optimally separated. Clas-
sification with Markov Random Fields (MRF) takes global and local statistics of the input
image into consideration. The image is regarded as the result of a random process with a
corresponding probability density function. This chapter will give a short introduction to
MREF. It is based on [Sigelle and Tupin, 1999] and further details may be found there.

e The definition of a Markov field applied to imagery is: = is a Markov field if and only if
the local conditional probability is exclusively a function of the neighborhood within the
considered region. In other words, the grey value of a pixel solely depends on the grey

values of its neighboring pixels.

In the context of MRF a digital image is seen as a bidimensional (or n-dimensional) quanti-
fied variable. It can be subdivided into zones, contours and structures due to parameters like
contrast, texture etc.. Hence, a single pixel grey value may not be significant itself but the
relation and interaction with neighboring pixels can lead to significance. The MRF approach
uses local grey value differences within a specified pixel neighborhood in order to distinguish
between regions. Any pixel s is part of a discrete finite network S (the entire image) and it
always has a certain property, usually its grey value. Cliques C; of pixels are derived from
the local neighborhood V;. Index ¢ stands for the number of pixels within the clique whereas

J is the number of pixels within the entire neighborhood (Fig. 4.4).
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Figure 4.4: (a) Cliques C; within a 4-connectivity neighborhood Vi, (b) cliques C; within
a 8-connectivity neighborhood Vg (figures drawn after [Sigelle and Tupin, 1999],
p.10)

45



4 Classification and Feature Extraction

The local interaction between the grey values of a single clique ¢; within a neighborhood
is called the potential of the clique U,,. The sum of all potentials U, of all cliques ¢; of an
image is called the global energy of the image U,. The local energy U; is the sum of the
potentials of cliques U,; within a certain image region. In order to apply MRF, statistics of
the image have to be defined. Hence, any image is considered a realization z of a random
field. The global image probability P (z) is used to determine the relation between a local
region and the rest of the image. In order to compute local conditional probabilities, it is
necessary to introduce Gibbs fields. The Gibbs measure is an energy function. The global
energy U, of a Gibbs field can be decomposed into the local energies U; of the cliques (Eq.
4.5).

P(z) = %exp(—Ug (z)) = %exp (— Z Ue, (x))
ceC
Z =Y exp(~Uy(x))

zeN

(4.5)

Z is a normalization term, defined over all possible energy relations 2. It can be math-
ematically proven that Markov fields and Gibbs fields are equivalent (Hamilton theorem).
In order to summarize the so far developed steps we can say that the energy function U
is based on the potentials of cliques C; of pixels, defined inside specific neighborhoods V;.
The potentials of the cliques allow for the evaluation of the global probability as well as the
local conditional probability. An issue that rests to be dealt with is the determination of the
global Gibbs probability of a configuration. For example, for a binary image of size 512 x 512
the number of possible configurations is 2262144 This huge number of possibilities makes the
direct determination of the global probability computationally very expensive. Hence, the
idea is to take samples of the image and to calculate the global Gibbs probability based only
on such samples. The goal is to find a sampling algorithm that satisfies the Gibbs probability
(Eq. 4.5). Two classical approaches are usually deployed for the extraction of these image
samples: the Gibbs samples and the Metropolis algorithm. The latest version of the pro-
grammed OTB classes uses the Gibbs sampler. It is based on an iterative construction of a
sequence of images. After a sufficient number of iterations the image sequence converges and
will satisfy the global Gibbs probability. The MRF model used in this project, defined with
a neighborhood and a particular energy function, is a Gaussian Markovian model. While
assigning pixels to certain classes (within a Bayesian framework), this model prefers small

grey value differences for neighboring pixels.
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4.2 Classification with Markov Random Fields (MRF)

Two images are the input to the MRF classification carried out in this project. The first
image is the optical image after rectification respectively the SAR image after rectification.
It is important to use the rectified images without any smoothing in order to leave the image
statistics unchanged. The MRF classification considers image statistics and thus changed
image statistics will lead to errors. The second input image is the labelled image from the
SVM classification. It was tested for initialization purposes of the MRF algorithm. How-
ever, a maximum likelihood classification as implemented in the MRF algorithm is usually
suffiecient. The initialization with the SVM classification was introduced only for testing
reasons. A MRF classification is characterized by certain functions that define its proper-
ties. Such functions to be specified are: a likelihood term, a regularization term, the clique
within a neighborhood, the optimization algorithm and the regularization coefficient. Like-
lihood term, regularization term and the regularization coefficient 8 define the maximum a
posteriori energy U (z/y) as implemented in the used software (see Eq. 4.6). The first two
summands describe the likelihood term (a Gaussian distribution with mean and standard
deviation as parameters) whereas the last summand is the regularization term. (3 acts as a
weight factor for the regularization term thus defining the relative impact of likelihood term

and regularization term on the maximum a posteriori energy.

. 2
U(x/y)zzw+log\/2-ﬂ'-ams+ﬁ- Z D (zs, 1) (4.6)
5 Ls (s,t)ECy

The regularization function @ is necessary for modelling the potential U.—(, ;) of the cliques.
Our programm applies the Potts model [Wu, 1982] as shown in Eq. 4.7. This model is capable
of dealing with several grey values and class labels. The chosen clique is of second order (C3)

and defined on an 8-connectivity neighborhood (see Fig. 4.4(b)).

Uc:(s,t) (zs5,71) = —a if 5=

. (4.7)
Uc:(s,t) (zs5,71) = ta if x5 # 34

As optimizer, the ICM algorithm developed in [Besag, 1986] was deployed for fast con-
vergence. As the initialization is pretty good, we can be relatively certain that the global
minima is reached. Since a Gaussian model is used, the grey-value means and the corre-
sponding standard deviations of the desired classes have to be specified, too. They were

taken manually from the rectified images.
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4 Classification and Feature Extraction

4.3 Feature Extraction in Optical Imagery

So far, the optical image and the SAR image are ortho-rectified, smoothed and classified. The
next step consists of extracting features. Feature extraction in the optical image is necessary
in order to register the results with the feature image of the SAR image. The best results
for the optical image were achieved with the Canny edge detection algorithm [Canny, 1986].

Five major steps are used in the edge detection scheme:
1. The input image is smoothed with a Gaussian filter.
2. The second directional derivatives (Hesse matrix) of the smoothed image are computed.

3. Non-maximum suppression is applied: the zero-crossings of the second derivative are

found and the sign of the third derivative is used to determine the appropriate extrema.
4. The zero-crossings are multiplied with the gradients of the image.

5. Hysteresis thresholding is applied to the gradient magnitude of the smoothed image in
order to find and link edges.

The result of the Canny-Operator applied to our smoothed optical test image is shown in
4.5. It highly depends on the previously conducted preprocessing. More smoothing results in
less detected edges. Thus, the parameter choice of the anisotropic diffusion filter has a high

influence on the outcome of the line detection.

Figure 4.5: Extracted lines from the optical image using the Canny line detector
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4.4 Feature Extraction in SAR Imagery

4.4 Feature Extraction in SAR Imagery

Three different categories of features visible in SAR imagery may be useful for the fusion of
SAR and the optical imagery: linear features, regions and point targets. A point detection
filter proposed by [Lopés et al., 1993] was implemented. Results are promising but still need
further refinement. The best extraction results for the SAR image are achieved with linear

feature extraction. Visible linear features in SAR images of urban areas are:

e Very strong reflections occur where building walls meet the ground. This is due to

double bounce effects of the signal.

e The regularly structured surface of factory hall roofs, if oriented perpendicularly to the

sensor’s flight direction, is visible in the image.
e Power lines and any conductive ground feature appear bright in the SAR image.

e Very often, the contrast between roofs and soil is clearly visible.

An assymetric fusion of lines approach was chosen for the line extraction in SAR imagery. It
was originally developed for the detection of road networks |Tupin et al., 1998]. The result
of this algorithm, applied to the SAR image (after thresholding), may be seen in Fig. 4.6.
Its strategy is the fusion of the outcome of two separate line detectors D1 and D2. Both line
detectors consist of two edge detectors. D1 is based on the ratio edge detector proposed in
[Touzi et al., 1988]. D2 uses the normalized centered correlation of two pixel regions. The
following two paragraphes will explain these two line detectors in further detail.

Line detector D1 consists of two ratio edge detectors, one on each side of the region of
interest. The ratio edge detector is a filter with a fixed false alarm rate. It is appropriate for
SAR images because the speckle effect is considered as multiplicative (in contrast to optical
images where noise is considered additive). D1 calculates the ratio of local means u of the

regions 4, j on both sides of an edge (Fig. 4.7(a)). The edge detectors response r; ; is defined

rij = 1 —min (M, Mj) (4.8)
1 p

The line detector D1 minimizes the responses of two edge detectors. For line detection, we

as:

consider three regions: 1, 2 and 3 (Fig. 4.7(b)). Region 2 is the probable line. 1 and 3 are

the neighboring regions. Hence, the response r to the line detector D1 is:
r = min (ri2,793) (4.9)

Diverse widths of region 2 are tried since the width of linear features may vary. Additionally,

eight directions are tested for each pixel. Only the best response is kept. A pixel is considered
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4 Classification and Feature Extraction

Figure 4.6: Extracted lines from the SAR image

a line pixel, as soon as the response r exceeds a previously chosen threshold. Lowering the
threshold results in more detected lines but also in a higher false-alarm rate. Therefore, this
decision threshold is a compromise between the chosen false-alarm rate and the minimum
detectable contrast. However, the false-alarm rate may also be decreased by increasing the
regions size. The more pixels contribute to the empirical mean of the region, the less false-

alarms occur. It has to be considered that larger regions increase computation time.

Region 3
Hs

Region 1 Region 2 Region 1
#i . #2 Hr

Region 2
£z

(a) (b)

Figure 4.7: (a) Vertical edge model, (b) Vertical line model; p; is the empirical mean of region
i (figures drawn after |Tupin et al., 1998], p.436)
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4.5 Calculation of Distance Images

The second line detector D2 is also based on two edge detectors. D2’s edge detector is
based on the normalized-centered cross correlation coefficient p?j. An edge consists of two
regions ¢ and j with their corresponding means y, the pixel number inside the region n and
the ratio of standard deviation and mean . In the following equation the ratio of the regions’
means ¢;; is interpreted as the empirical contrast between the two regions 7 and j. The closer

to one this variation coefficient is, the more homogenuous is the area.

1

2 — 4.10
Pij Ky T A0 *y 7 (4.10)

ni*nj*(Eij —1)2

1+ (n; +nj) *

The advantage of this edge detector is its dependence on both the contrast between the
two regions ¢;; and inside each region . A disadvantage is that may be influenced by
outliers contained in the regions. Again, the line detector strives for the minimum response
p = min (p12, p23) of the edge detectors neighboring the potential line. Finally, the responses
from both line detectors D1 and D2 are fused. A so-called associative symmetrical sum

o (z,y) is computed (Eq. 4.11). x and y are the responses from the line detectors.

z-y
l—-z—-—y+2-2-y

o(z,y) = , with z,y € [0,1] (4.11)

4.5 Calculation of Distance Images

Distance images are calculated from the feature images derived in section 4.3 and section
4.4. This step was introduced in order to reduce remaining geometric residuals that result in
different absolute positions of the extracted lines.

The differences between corresponding lines in the images are assumed to be more similar
than the absolute line positions. Hence, distance images will increase the similarity between
the optical image and the SAR image. This process is also referred to as distance mapping.
Fig. 4.8(a) and Fig. 4.8(b) show the distance maps of the feature images. The colored
boxes frame corresponding parts of the images. Bright values display longer distances while
darker values display pixels close to a line pixel. A distance transformation is the algorithm
producing a distance map from a binary image that contains objects and background. In
our case, the objects are the previously extracted lines. Such a distance map displays the
Fuclidean distance between a background pixel and the nearest line pixel. This distance is
translated to a grey value. An approach developed by [Danielsson, 1980] was chosen for the
computation of the Euclidean distances. This approach writes into each pixel the vector of
the relative position of the nearest line pixel instead of solely noting the distance. It leads to

a representation of the Voronoi division of the object pixels.
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4 Classification and Feature Extraction

Figure 4.8: (a) Distance map of the optical image, (b) distance map of the SAR image
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5 Image Fusion

So far, the optical and the SAR image have been ortho-rectified, preprocessed, classified,
lines have been extracted and distance images have been computed. All such steps can be
considered as preparations for the registration of the images following up. Whenever possible,
geometric and radiometric differences between the images, due to the different sensors, have
been reduced (reconsider the ortho-rectification and the feature extraction, respectively). Up
to this stage, both images thus have always been treated separately. This chapter will now
introduce the reader to the registration of the images. For the first time within the processing
chain, both images are treated simultaneously and a relation between them is established.
This relation consists of an image comparison which is conducted with a similarity measure.
We measure, to which extent we can find corresponding information in both the optical
and the SAR image. Since we have reduced the information contained within the images
to line features, corresponding lines are considered corresponding information. The first
section briefly introduces open source software library ITK and outlines the architecture of
its registration framework. It consists of four modules which are described in further detail

in the sections following thereafter.

5.1 Registration Framework

The image registration process is embedded into a registration framework, originally provided
by ITK (Fig. 5.1). ITK is the core component of the software library OTB. Remember
that OTB is the software library, where the fusion approach developed in this project is
integrated in. ITK was originally developed for the exploitation of medical images. It provides
sophisticated algorithms for image analysis tasks.

The inputs to this framework are two images. While one image is called the fixed image
(it acts as the reference), the other one is called the moving image. The goal is to find
the optimum spatial mapping parameters that align the moving image with the fixed image.
Hence, the moving image has to be deformed. In this project, the fixed image is the optical
image while the SAR image is the moving image. We have chosen the optical image as the
fixed image because we consider it to contain less residuals than the SAR image. In the

following, the optical image will allways be called fixed image and the SAR image will be
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5 Image Fusion

ixels

P
Fixed Image Metric
A pixels i
Optimizer
Interpolator

Transform

parameters

pixels points

Figure 5.1: The ITK registration framework [Ibanez et al., 2005|

called moving image. The registration framework treats image registration as an iterative

optimization problem and consists of four components:

e the transform component applies a geometric transformation to the fixed image points

in physical space in order to map them to the moving image,
e the interpolator evaluates intensities in the moving image at non-grid positions,

e the metric measures the similarity between the deformed moving image and the fixed

image,
e and the optimizer optimizes the similarity value.

A new set of parameters for the transformation of the following iteration is determined after
each optimization step. The major advantage of this modular conception of the registration
framework is easy compatibility of a large variety of optimizers, geometric transformations
and similarity measure techniques. A detailed description of the chosen algorithms for each

registration component is given in the following sections.

5.2 The Transformation

Different two-dimensional and three-dimensional geometric transformations exist e.g. affine
transformation, projective transformation or polynomial transformation. We also have to
distinguish between rigid and non-rigid transformations. Rigid transformations act globally
on the image i.e. the transformation parameters stay the same for each image point. Non-
rigid transformations act locally and thus allow for different transformations of the image
points. A rather simple two-dimensional rigid transformation was chosen for this project in

order to facilitate quick parameter estimation. It consists of a clockwise rotation « around
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5.2 The Transformation

the geometric image center (Cx, Cy) and of translations in x and y direction, Tx and Ty

respectively (Eq. 5.1). The rotation is applied first, followed by the translation.

;

Two ways of applying the a transformation to the image exist: direct and indirect (Fig.

X —-Cx
Y - Cy

Tx +Cx
Ty + Cy

(5.1)

[cos a —sin «

sin o CoS «

5.2). While the direct method is commonly used for transforming data, the indirect method is
almost always used for transforming imagery. Applying an indirect transformation prevents

holes and guarantees that each pixel receives one and only one new grey value.

Moving Image Fixed Image

Figure 5.2: Indirect transformation technique

Hence, we use the indirect transformation method. It starts with the result and transforms
back to the original image. The result in this case is the deformed moving image with the
grid of the fixed image. The idea is

1. to start iterating through the grid of the fixed image (in physical space),

2. to transform each point to the moving image,

3. to interpolate the grey value within the moving image,

4. and to assign this grey value to the current fixed image grid position.
The result of this transformation is an image with the grid of the fixed image and the
interpolated grey values of the moving image. This new image is the deformed moving

image. Our aim is to find the transformation parameters that optimally deforms the moving

image in order to maximize the similarity measure.
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5 Image Fusion

5.3 The Interpolator

Grey value interpolation is necessary since the transformation into the moving image leads
to positions that usually do not coincide with the exact grid positions. In order to obtain a
grey value at a fractional location in the moving image several interpolation techniques may
be thought of. In this case, the goal is to implement an interpolation function that is rather
simple understand, fast to compute and that results in a continuous grey value surface. Hence,
the interpolator used in this project is based on bilinear interpolation. Bilinear interpolation
is the extension of a one-dimensional linear interpolation for interpolating functions of two
variables on a regular grid. The grey value of the point of interest within the image is
calculated from the weighted average of the four surrounding grid points (Fig. 5.3). First,
two intermediate grey values g4 and gp are determined in y direction (Eq. 5.2). In the
following the grey value of the point of interest gp is determined by linearly interpolating
between g4 and ¢gp in z direction. It has to be considered that all computations are done in

physical image coordinates.

221 : 222
dx ! g
T 41
dy !
1.1 : 1.2

Figure 5.3: Bilinear interpolation of a grey value incoporating four neigboring grey values

ga =911+ dy- (92,0 —91,1)
9B =912 +dy - (922 — 91,2) (5.2)
gp =ga+dz- (95 —ga)

The generated output grey value surface is continuous but not necessarely smooth because
only four neighboring grey values are included for the interpolation. Smoother interpolation
results can be obtained by using more sophisticated interpolation functions such as B-Spline
interpolation. However, the relatively simple approach of bilinear interpolation was found

sufficient in this case.
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5.4 The Metrics

5.4 The Metrics

A metric is a tool for measuring the similarity of two images. It measures how well the
transformed moving image fits the fixed image. Therefore, it compares the grey-scale intensity
of the images [Ibanez et al., 2005|. Considering two different images as input to the framework,
corresponding objects in both images have to be detected. For example, a particular point
in the fixed image has to be found in the moving image as well. Only in case we find such
corresponding point, a transformation may be determined that maps one point onto the
other. More generally we can say: a metric evaluates the amount of overlapping information
of both images. It provides a measure of their similarity. Completely identical images, i.e.
images taken by the same sensor under the same circumstances, having identicial radiometric
properties as well as geometric properties, will thus lead to optimal metric values. Usually,
the images are not completely identical. In fact, very often they show only few similarities
at first sight. This lack of similarity is a serious issue, particularly in the case of optical and
SAR imagery comparison. In this project, the performance of three different metrics was

tested, based on least-squares adjustment, normalized correlation and mutual information.

The mean-squares metric calculates the quadratic difference between two images A and B
(Eq.5.3). The difference is determined pixel-wise over a user defined region. A; and B; are
the grey-values at the i*” pixel of the corresponding image, N is the number of pixels inside
the considered region and M S (A, B) is the metrics value. The optimal value of this metric is
zero and poor image matches hence result in high metrics values. The mean-squares metric is
restricted to images of the same spectral band since it does not allow for intensity differences
between the two input images. This metric is useful to compare the distance images since
they have no intensity difference. Its capture radius is large i.e. the metric stays robust for

large misalignments of the images and does not need very precise initial parameters.

N
MS (A, B) = ]‘bz (A; — By)? (5.3)

i=1
Another very useful metric is based on normalized cross-correlation. It calculates the
cross-correlation between the two input images A and B (Eq.5.4). Furthermore, the cross-
correlation is normalized by the square root of the autocorrelation of the images. Again,
the metric is limited to images obtained using the same modality (identical spectral band).
However, it is insensitive to multiplicative factors between the input images due to its nor-

malization. Compared to the mean-squares metric, the capture radius is relatively small.
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5 Image Fusion

NC (A,B) — L (Ai- B (5.4)
VIl 422l B

The third metric tested is based on mutual information. Mutual information provides

a measure to show how much the image intensity of the first image tells about the image
intensity of the second image. Since the actual form of dependency of the images does not
have to be specified, this metric is very useful for the comparison of multi-modality imagery.
It is defined in terms of entropy F of the images A and B (Eq. 5.5). In imagery we deal with
discrete data and hence the entropy is described by a sum (integral for continuous data).
The input to the entropy are the probability density functions (pdf) p4 and pp. In case of
imagery, the pdf simply is the image histogram of A and B respectively. Usually, the pdf is
estimated by superimposing histograms derived from image samples (a process called Parzen

windowing).

E(A) ==Y pala)-logpa(a) (5.5)

The joint entropy of the images is defined as

E(A,B) =Y _pan(a,b)-logpag(a,b). (5.6)

The sum of both individual entropies E(A) and E(B) equals the entropy E(A,B) if we
consider both images to be completely independent one from another. In other words, no
similar information exists (e.g. images captured above two completely different regions with
different sensors). However, if there is any equal information, the joint entropy E(A,B)
apparently must be smaller than the sum of the individual entropies. The difference between
the joint entropy and the sum of the individual entropies is the mutual information I(4,B)
5.7.

I(A,B) = E(A)+ E(B) — E(A,B) (5.7)

An in detail description of the deployed algorithm can be found in [Viola and Wells, 1995].

5.5 The Optimizers

The optimizer’s goal is to find the set of transformation parameters that maximizes the
metric value (i.e. the similarity) of the fixed and the moving image. The search for optimal
parameters takes place in parameter space. The dimension of the parameter space equals the

number of parameters. Hence, the more parameters, the more complicated and unstable the
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5.5 The Optimizers

optimization issue becomes (particularly if parameters are correlated). Thus, it is desirable
to use transformations with a small number of uncorrelated parameters. Practical testing
showed that optimization of more than seven parameters becomes very difficult. More than
ten parameters lead to a completely unstable optimization process. However, transformations
with more than seven parameters exist. In such cases, the optimization has to be split up in
several steps (e.g. rotation, translation, scaling). Different optimizers with various properties
were tested. A demanding task is to account for the various parameter scales. Different
parameter types have different total values. An optimization step in parameter space may
have almost no impact on the registration for one paramter while the same change applied
to another parameter shifts the moving image far away from the fixed image. For example,
translations on the ground amount to several meters while rotation angles (in radiance) are
usually very small. A substraction of 1.6 will shift the moving image by only 1.6 meters on
the ground but result in a 90° rotation. Therefore, the most challenging part of the entire

registration process proved to be the fine tuning of the parameter scales.

A fairly simple and thus easily understandable optimizer is based on a regular step gradient
descent. It is a deterministic optimizer and advances the transformation parameters in the
gradient direction. The step size is determined using a bipartition scheme, known from the
mathematical field of graph theory. Input parameters for the computation of the current
step are the gradient and the direction of the previous step. This approach allows for the

reduction of oscillation around local minima (|Bignalet-Cazalet, 2004]|, p.37).

Another optimizer tested uses a so-called (1+1) evolution strategy [Styner et al., 2000],
originally developed for the analysis of medical imagery. It is a stochastic, nonlinear optimizer
and belongs to the family of evolutionary algorithms. The basic idea is that a parameter
vector (containing the transformation parameters) represents an individual. The individual is
asigned a certain energy value displaying its fitness (probability of survival). All individuals of
one iteration step form a population. The following optimization step mutates this population
(parent population) and create a new population (children). Both generations are added and
the size of the combined population is reduced to the size of the parent population. Only
the fittest individuals survive. The mutation is carried out by a random vector. Its random
values are derived from a normal distribution with the dimension of the parameter space.
The mean and the covariance matrix are computed from the current parent population. In
case the newly generated population consists of fitter individuals than the previous one, the
covariance matrix is increased by multiplication with a coefficient. The covariance matrix is

multiplied with a shrink factor if the new generation is less fit.
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6 Results and Discussion

The previous chapters have explained in detail the components of the image fusion process.
Two main components characterize our approach: a preparation for line extraction compo-
nent and a registration component. Initially, the optical and the SAR image are prepared
separately for line extraction. Therefore, optical and SAR image are first ortho-rectified with
rather general transformations. Once projected to the ground, preprocessing follows up. The
optical image is smoothed with an anisotropic diffusion filter and the SAR image is Frost
filtered. Both filters consider local properties of the images. Thus, intra-region smoothing is
conducted and contours are preserved. In order to distinguish between rectified ground and
unrectified buildings, a classification takes place. It consists of two classifications, an initial
one with Support Vector Machines and a final one with Markov Random Fields. In the next
step, lines are extracted and distance maps calculated. Remember that line extraction is nec-
essary because we deal with very high resolution imagery. Classical pixel based approaches
fail, due to the high level of detail in the images and their multi-modality. The second com-
ponent of our approach treats the images simultaneously. Two distance maps are input two
a modular registration framework. A registration is accomplished iteratively, registering the
SAR image onto the optical image. In the following sections, results are provided for the
main steps of the developed fusion approach. Finally, the outcomes of for different fusion
test programs are shown and evaluated. Reconsider that the emphasis of this project is on
the overall development of the registration procedure. Thus, each component result may be

further improved.

6.1 Ortho-rectification

The first step of the image fusion consists of an ortho-rectification of both optical and SAR
image. The programmed algorithms were tested using simulated DEMs (Fig. 6.1(a), (b), (c))
since no real DEM was provided for the test images. The DEMs show the same size as the
optical and the SAR image, the grey values display the height and their unit is meters. Zero
elevation is displayed in black. The brighter the grey value becomes, the more elevated is the
DEM. Since the image format (.png) only allows for integer grey values, the height difference

between two neighboring pixels of different color is at least one meter. As a consequence, the
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6 Results and Discussion

DEMs were only used for debugging the source code of the transformations. Fig. 6.2 and
Fig. 6.3 show the two test images as seen in Fig. 3.3 after deformation with DEMs from
Fig. 6.1. It has to be reconsidered that inverse transforms have been used. In other words,
the rectified image in image space is projected to the ground. In a real world application,
the image in image space is the deformed one. Thus, the image in image space would be

rectified. Here, the images are swapped for testing purposes.

(a) (b) ()

Figure 6.1: (a) DEM inclined towards the right side with height values between 0 m and 255
m, (b) DEM with height values between 0 m and 255 m showing a summit in
its middle horizontal axis, (c) DEM with height values between 0 m and 150 m
simulating a hilly landscape

Figure 6.2: (a) Optical image deformed with DEM 6.1(a), (b) Optical image deformed with
DEM 6.1(b), (c) Optical image deformed with DEM 6.1(c)

Since the transformation is indirect (refer to section 5.2 for further details), the rectified
image has to be determined iteratively. The height value for the first iteration has to be
estimated. Our programm simply uses the mean height of the entire DEM. With this initial
height value, a first transformation is conducted. For the following iteration, the mean height

is calculated in a window, centered on the previously computed coordinate. It leads to a
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6.2 Results of the Classification

(a)

Figure 6.3: (a) SAR image deformed with DEM 6.1(a), (b) SAR image deformed with DEM
6.1(b), (c¢) SAR image deformed with DEM 6.1(c)

refined transformation into the original image. This procedure is now continued iteratively
until the DEM window contains only one height value or the position change in the original
image is below a specified threshold. For the optical image, the inverse collinearity equations
were used (Eq. 3.3 and Eq. 3.4). The SAR image was ortho-rectified with the inverse Toutin
equations (Eq. 3.5, Eq. 3.6 and Eq. 3.7). In contrast to the rectification of the optical
image, the SAR image calls for an additional processing step. The unrectified optical image
shows only regions the sensor can actually "see". This is not the case for SAR images due
to their slant range geometry. Occluded areas are shown in the image and appear as dark
regions. Additionally, layover effects appear. With a DEM and the knowledge of the sensor’s
trajectory and attitude, affected regions can be determined. An algorithm proposed by [Meier

et al., 1993] was implemented.

6.2 Results of the Classification

The optical image was classified into five classes, displayed by five different colors (Fig. 6.4).
The main goal is to classify the image into the rectified ground level and objects above
ground that have not been rectified. Therefore, the classes chosen for the optical image are
vegetation (green), roof (blue), soil (brown), shadow (black) and facade (white). Vegetation,
soil and shadow are considered as ground. Considering the class vegetation as ground can
be justified for the test image because no trees or bushes exist. Soil incorporates all roads,
parking lots and other non-elevated man made structures. The shadow class is considered as
ground because no elevated objects appear next to the buildings in our particular test image.
Usually, the classification of shadow as ground has to be thought over carefully since elevated
objects may be hidden in shadowed areas. The SAR image was classified into six classes

(Fig. 6.5): occluded area (black), soil (brown), dark roof (yellow), vegetation (green), light
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roof (blue) and strong reflectors (red). Occluded area, soil, vegetation and strong reflectors
are considered as classes on the rectified ground level. As already mentioned for the shadow
class of the optical image, the occlusion class has to be reconsidered since elevated objects
may be hidden inside. Strong reflections in urban areas occur due to double bounce effects of
the signal. Usually, this double bounce effect appears were building walls meet the ground.
Bright L-shaped lines thus are good indicators for the ground level and can be used for the
registration. However, the double bounce effect may also occur if a building substructure

exists on a roof.

(a) (b)

Figure 6.4: (a) Optical image classified into five classes based on image statistics (3x3 filter
matrix), (b) Optical image classified into five classes based on image statistics
(7x7 filter matrix)

The input images for the SVM classification were computed within two neighborhoods.
Mean, median, standard variation, energy, entropy, skewness and kurtosis were calculated
within a 3x3 matrix and a 7x7 matrix. Since the 7x7 matrix enlarges the neighborhood,
the classification results are smoother. In particular, the classification results obtained from
the SAR image are a lot smoother if a larger neighborhood is used. This effect becomes
obvious if Fig. 6.5(a) and Fig. 6.5(b) are compared. As already explained in chapter 4, the
input to the classification should be the original image. However, tests were also conducted
with the Frost filtered SAR image as input to the SVM classification. This approach can be
justified as long as consistency is kept during the entire classification process. Therefore, it
is not possible to use the SVM classification of the Frost filtered image as initialization for

the MRF classification of the original SAR image and vice versa.
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(a)

Figure 6.5: (a) SAR image classified into six classes based on image statistics (3x3 filter
matrix), (b) SAR image classified into six classes based on image statistics (7x7
filter matrix)

Figure 6.6: (a) Frost filtered SAR image classified into six classes based on image statistics
(3x3 filter matrix), (b) Frost filtered SAR image classified into six classes based
on image statistics (7x7 filter matrix)

The inputs to the MRF classification are the optical image, the original SAR image and
the Frost filtered SAR image. Additionally, the MRF classification uses the SVM result as
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initialization. Several parameters have to be specified. For each class, its grey value mean
and standard deviation has to be provided because the likelihood term of the MRF assumes
the images to follow a Gaussian distribution, although we know this is not an accurate model
(see chapter 3). Additionally, a weight parameter beta has to be specified. It has to be
reconsidered that beta weights the regularization term in relation to the likelihood term.
Increasing beta puts a higher weight on the regularization term. Thus, the influence of the

cliques of order two within the 8-connectivity neighborhood of the pixel increases.

Figure 6.7: (a) The original optical image, (b) The original SAR image

The results of the entire classification, SVM followed up by MRF, do not show very good
results. Several reasons account for this lack of classification quality. The first reason to
be thought of is the input statistics to the SVM classification. It turns out that the chosen
statistics do not describe the image characteristics comprehensively enough for classification
purposes. As soon as the input image does not show significant grey value or textures
differences between classes, the SVM algorithm will not succeed in distinguishing between
the feature vectors. Taking a look at our optical grey value image, we can clearly see that
only very small texture differences exist between ground and roof. Additionally, the grey
value amplitudes are very similar. The computed image statistics do not succeed in solving
this problem. Another criteria for the performance of an SVM algorithm is its mathematical
sophistication. In our case, the SVM algorithm is based on a linear model. In consequence of
this simple mathematical model, similar feature vectors cannot be separated by a hyperplane,

i.e. the classification fails. Therefore, non-linear SVMs should be tested in order to enhance
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(a)

Figure 6.8: (a) The original optical image after classified with MRF, beta set to 4, initial-
ization with SVM classification result from Fig. 6.4(a), (b) The original optical
image after classification with MRF, beta set to 5, initialization with the SVM

classification result from Fig. 6.4(b)

Figure 6.9: (a) The original SAR image classified with MRF', beta set to 3, initialization with
SVM result from Fig. 6.5(a), (b) The original SAR image classified with MRF,
beta set to 4, initialization with SVM result from Fig. 6.5(b)
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(a)

Figure 6.10: (a) The Frost filtered SAR image after classification with MRF, beta set to 4,
initialization with SVM result from Fig. 6.6(a), (b) Frost filtered SAR image
classified with MRF, beta set to 4, initialization with SVM classification result
from Fig. 6.6(b)

the classification results. Taking into account those drawbacks, the initial classification for

the MRF refinement already lacks quality.

The MRF classification used in this project assumes the image grey values to follow a
Gaussian distribution. This fact can more or less be justified for the optical image but not
for the SAR image. The SAR image classification wit SVM suffers from similar problems
as the optical image but the consequences are worse. The statistical parameters which are
put into the SVM algorithm do not allow for sufficient distinction between the classes. In
particular, the distinction between vegetation and roof has to be considered almost a failure.
The results do not significantly improve using the MRF classification for a very particular
reason. The MRF classification deployed in this project considers the grey values of the image
to follow a Gaussian distribution. While this fact can be justified for the optical image, it lacks
justification for the SAR image. As explained in detail in section 3.4.2, the mathematical
model of the SAR image is considered multiplicative and the speckle effect exists. The
distribution of the SAR amplitude image is not Gaussian. Hence, the distribution of the SAR
image used in this project cannot be assumed to be Gaussian. A possible solution to this
issue is given in |Tison et al., 2004]. A mathematical model relying on the Fisher distribution

is proposed in order to model high resolution scenes of urban areas. An alternative approach
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for the classification of optical imagery based on watersheds and self-organizing Kohonen
maps [Kohonen, 1990] was proposed in [Poulain, 2007]. The watershed segmentation leads to
segments that are statistically and geometrically analysed. For example, invariant geometric
moments proposed in [Flusser and Suk, 2006] are one component of the input feature vector
to the Kohonen map. Using rotationally invariant geometric moments could improve our
classification results as well because we deal with urban areas. In urban areas, geometric
information is densely distributed. In our project, no geometric information has been included

for the classification. Its introduction would enhance classification results.

6.3 Feature Extraction Results

Lines were extracted from the optical image (Fig. 6.11(a)) and from the SAR image (Fig.
6.11(b)). The lines in the optical image were extracted with the Canny edge detector. Before
line extraction was conducted, the optical image was filtered with the anisotropic diffusion
filter.
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Figure 6.11: (a) Lines extracted with the Canny algorithm applied to the anisotropic diffusion
filtered optical image, (b) Lines extracted with the Tupin algorithm applied to
the Frost filtered SAR image

Lines in the SAR image were extracted using the algorithm developed by [Tupin et al.,
1998] and a threshold was applied. The input to the algorithm was the Frost filtered SAR
image. This line extraction algorithm was adapted to SAR imagery. Hence, good results can

also be obtained with the original SAR image as input. However, testing showed that the
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line extraction based on the Frost filtered image improves results. The grey values of the line
images have been inverted for visualization reasons. Obviously, the line extraction results call
for further enhancement. In particular the lines obtained from the SAR image show many
small line pieces which leads to problems during the registration process. Improvements
should comprise the assembly of many small line pieces to longer line segments. Small line
pieces that do not contribute to the construction of longer line segments should be eliminated.
Different approaches may be thought of e.g. based on a Hough transformation. Additionally,
algorithms capable of providing the desired properties already exists in several road network
extraction or road network updating softwares. They should be tested on the images of this

project in order to refine line extraction results.

6.4 Fusion Results

After ortho-rectification, preprocessing, classification and line extraction, distance maps are
calculated (see Fig. 4.8). Their computation is based on the line images. Each pixel value
in the distance image displays its Euclidean distance to the closest pixel of a line object.
Distance mapping was found necessary in order to prevent residuals that arise from different
absolute line positions. For the fusion step, the optical distance map and the SAR distance
map are input to the ITK registration framework. We define one image to be the fixed
image and the other one to be the moving image. The moving image will be deformed and
mapped onto the fixed image. In our case, we choose the optical distance map as fixed
image. Hence, the SAR distance map is mapped onto the optical one. In order to visualize
the final registration results, a checkerboard image is introduced (Fig. 6.12). The inputs to
the checkerboard image are the fixed image and the resulting deformed SAR image after the

registration.

(a) (b) ()

Figure 6.12: (a) Fixed image (optical), (b) Deformed moving image (SAR), (c¢) Checkerboard
of the two images
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Remember that the registration has a modular architecture. Its four modules have to be
chosen carefully in order to achieve meaningful results. A transform and an interpolator are
specified for the mapping. In order to measure the similarity of the fixed and the deformed
moving image, a metric is specified. An optimizer drives the adjustment of the iterative
search for appropriate transform parameters, depending on the metric values. The greater
the similarity between fixed and deformed moving image, the better the optimizer converges
towards a sufficient solution. A variety of algorithms for any modul exist. The algorithms
chosen for our image registration are described in chapter 5. All of them have different
properties. By chosing appropriate module combinations, the registration framework can
be adapted to the particular input images. In this project, we test four different module

combinations in separate test programs (Tab. 6.1).

Test Program | Transformation | Interpolator Metric Optimizer

Program A Rot. + Transl. Bilinear Mean Squares Reg. Step Grad. Desc.

Program C Rot. + Transl. Bilinear Mutual Inf. 1+1 Evolutionary
Program D Rot. + Transl. Bilinear Norm. Cross-Corr. 141 Evolutionary

Program B Rot. + Transl. Bilinear Norm. Cross-Corr. | Reg. Step Grad. Desc.

Table 6.1: Registration test programs

Since the performance very much depends on the transform parameters, the same simple
transform is used for all four test programs. It applies a centered rotation, followed by a
translation in x and y. The center can either be the grey value gravity center or the geomet-
ric center of the image. Since our test images cover the same ground region, the transform is
centered on the geometric image center. The interpolation has the least impact on the reg-
istration result. Hence, bilinear interpolation is conducted in all registration test programs.
Hence, the entire mapping part (transform and interpolation) is not varied. Three differ-
ent metrics are tested: mean squares, normalized cross-correlation, and mutual information.
Optimizers drive the execution of the registration process. We test two optimizers: regular
step gradient descent and 141 evolutionary. Different parameters have to be specified for
each module. Thus, the number of parameters varies for the four test programs. Initial
parameters have to be input to them. They have a big impact on the quality of the result,
the computational costs and the convergence. We distinguish between the initial transform
parameters and the parameters for the optimizer. Although the chosen transformation has
only five parameters (the rotation angle, the image center coordinates, two translations),
attention has to be paid to differences in the corresponding units. The angle has the unit
radian ([rad]|) and hence the values are in the range [—m, w]. However, the rotation center

and the translations are measured in millimeters (mm|). Hence, different scales have to be
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chosen for the parameter optimization. This normalization of the parameter scales is abso-
lutely necessary in order to obtain sufficient results with the ITK registration framework.
The 1+1 evolutionary optimizer parameters and the regular step gradient descent optimizer
parameters define the capture radius and the maximum number of iterations. Additionally,
the regular step gradient descent optimizer calls for an initial step length, a minimum step
length and a relaxation factor. The initial step length defines the initial change of the trans-
form parameters. A relaxation factor specifies the rate at which the optimizer’s step length
in parametric space is reduced. Minimum step length defines the convergence tolerance, i.e.
the parameter change for the final transform. As soon as minimum step length is reached,
the registration ends. In case, the optimizer does not reach the minimum step length, the

maximum iteration number terminates the registration process.

Figure 6.13: (a) SAR Image after registration with Program A, (b) SAR Image registered
onto the optical image with Program A

Test Program | Rotation [deg] | Translation in x, y [mm]
Program A 7.15 39.29, -45.83
Program B 10.01 71.02, -60.03
Program C 2.30 31.78, -6.84
Program D 4.33 33.12, -27.59

Table 6.2: Final transformation parameters that are applied to the SAR image
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(a)

Figure 6.14: (a) SAR Image after registration with Program B, (b) SAR Image registered
onto the optical image with Program B

(a)

Figure 6.15: (a) SAR Image after registration with Program C, (b) SAR Image registered
onto the optical image with Program C

A performance evaluation of the four test programs reveals the pros and cons. Test program
A gives good results (Fig. 6.13). It is relatively fast to compute, too. Image metric (mean

squares) and optimizer (regular step gradient descent) work well on the distance images. The
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(a)

Figure 6.16: (a) SAR Image after registration with Program D, (b) SAR Image registered
onto the optical image with Program D

outcome is also fairly accurate. Program B provides the best results in terms of accuracy
(Fig. 6.14) and computation speed. The metric based on normalized cross-correlation in
combination with the regular step gradient descent optimizer is the best combination for our
case. Program C is the least accurate, probably due to its metric based on mutual informa-
tion. Actually, mutual information is usually applied directly to multi-modality imagery with
different radiometries. In our case, there is no need for using a mutual information metric.
Due to our main idea of feature based registration, the radiometric differences disappear.
Hence, we measure the similarity of two images with the same radiometry: the distance
images. Program D (Fig. 6.16) provides better results than C but the inital parameters
are difficult to adjust. Small changes in the initial parameters lead to big changes in the
outcome. Metric (normalized cross-correlation) and optimizer (141 Evolutionary) do not
work well together. Considering the results of the test programs, it becomes obvious that
the 141 evolutionary optimizer and the mutual information metric are not appropriate for
registering the distance images. Combinations of the normalized cross-correlation metric and
the mean squares metric with the regular step gradient descent optimizer give good results.
Since no radiometric difference appear, these two metrics are sufficient for registering the

distance images.

In fact, the transformation implemented in the ITK registration framework is too simple

for a comprehensive modelling of the SAR residuals. Other rigid transformations would
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provide better results e.g. an affine transformation or a rational polynomial transform. It
is also possible to use the initial collinearity equation or the radar equation respectively as
transformations. Both collinearity and radar equation were tested but showed to be very
complexe in terms of parameter estimation. Since they show at least eleven parameters,
the optimizers provided in I'TK showed convergence difficulties. It was found that the ITK
optimizers work fine with transforms containing not more than seven parameters. Transforms
that show more than seven parameters, like the collinearity and the radar equations, have to
be split up. The optimization may then be conducted in several steps. Usually, the first step
to be optimized is the rotation, followed by a translation. Thereafter, scales can be optimized
and so on. This step-wise optimization could be carried out iteratively thus refining the entire
optimization. Additionally, tests should be conducted with non-rigid transformations that
align the images locally. For example, an approach based on the finite elements method
(FEM) provided in OTB may be thought of.
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7 Conclusions and Future Perspectives

We began the description of the optical/SAR image fusion with the theoretical background.
Thereafter, the test data was introduced and the entire registration strategy was outlined.
In the following chapters and sections, a detailed understanding of each image registration
component was provided step by step. Results were displayed and discussed component-wise
in the previous chapter. This chapter gives a summary of the project (section 7.1), draws

some final conclusions and finishes with an outlook (section 7.2).

7.1 Summary

The goal of this project was the development of a fusion strategy for high resolution optical
and SAR images (Fig. 7.1). Due to the different sensors and the high resolution of the
images, classical pixel based approaches fail. Hence, our main idea was image fusion based
on extracted features. Since we deal with urban scenes, lines were extracted. In order to
prepare for line extraction, both images were ortho-rectified. Distortions due to the different
sensor geometries and the terrain were reduced with rather general geometric models. For
the optical case, the collinearity equations were used. The SAR image was rectified with
the Toutin equations. In the next step, the optical image was filtered with an anisotropic
diffusion filter and the SAR image was Frost filtered for despeckling reasons. Following up
was a classification in order to distinguish between rectified ground and unrectified buildings.
Initially, a Support Vector Machines classification was carried out. Thereafter, preliminary
classification results were refined with a Markov Random Field classification. Finally, lines
could be extracted. We applied the Canny filter to the optical image and the Tupin line
detector to the SAR image. Then, distance maps were calculated. This step was found nec-
essary in order to avoid errors introduced by different absolut positions of the extracted lines.
The distance maps were input to the ITK registration framework and registered iteratively.
Four programs, combining various mappings, metrics and optimizers, were tested. A rather
simple mapping algorithm was implemented. It consists of a centered rotation plus trans-
lation and a bilinear interpolation. Best performances could be achieved with a normalized
cross-correlation metric and a regular step gradient descent optimizer. Finally, we obtained

a deformed SAR image that was successfully registered onto the optical image.
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Figure 7.1: Review of the entire image optical/SAR image fusion
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7.2 Conclusions and Outlook

In conclusion, the overall registration strategy proved to be successfull. Its integration into
the ORFEO Toolbox will provide additional possibilities. It will give new ideas and serve as
a basis for further improvements. None the less, further refinement of all components would

significantly improve results.

e The ortho-rectification of the SAR image could possibly be enhanced with an approach
based on Doppler and range equations [Raggam et al., 1993; Gelautz et al., 1998;
Sorgel, 2003]. Since this alternative approach contains the real physical parameters of
the SAR sensor, a refinement of the satellite’s parameters is also possible [CNES and
ENST, 2005].

e The detection of occluded and layover regions is imperative and should be further
tested in the first place. The implemeted algorithms could only be tested with the
simulated DEMs, yet. Disturbing effects occur due to the high difference between
neigboring height values. They should be tested with real DEMs in order to evaluate

the performance of the programmed algorithm.

e For this project, the SVM classification had to be tested but does not show sufficient
outcomes. Alternative classification approaches should be tested, too, in particular for
the optical image. Watershed segmentation followed up by a classification with self-
organizing Kohonen feature maps shows promising results. For the SVM classification,
the incorporation of further descriptive features, e.g. geometric moments, would prob-
ably also improve results. The inclusion of semantic information could be thought of,
too. For example, the distinction between ground and roof in the SAR image could
be enhanced by declaring all regions, framed by L-shaped bright lines and occludded

areas, as roofs.

e The Markov Random Field classification of the SAR image assumes a Gaussian distribu-
tion. As already previously outlined, an amplitude SAR image is Rayleigh distributed.
For urban scenes, approaches, based on the Fisher distribution, have been successfully
tested. In order to improve MRF classification results of the SAR image, an appropriate

distribution has to be chosen and integrated into the source code.

e Feature extraction already works well and thus only calls for minor changes. The
number of small line pieces should be significantly reduced. Lots of small line pieces
lead to disturbing effects in the distance maps. Longer line segments could be derived

from the assembly of multiple line pieces. An approach originally developed at the
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CNES for the extraction of road networks could possibly solve this issue. It still has to
be adapted to the SAR image though.

So far, the threshold of the Tupin line detector is chosen manually. In order to not only
adapt the algorithm to our test image but to all kinds of SAR images, an automatic

threshold determination is necessary.

Another part calling for improved performance is the mapping component of the ITK
registration framework. In order to really take care of the residuals still present in
the SAR image, more sophisticated transforms are absolutely necessary. At least,
anisotropic scaling has to be integrated as soon as possible. Furthermore, non-rigid
transformations should be tested. An algorithm based on the Finite Elements Method
(FEM) already exists in OTB. It will be applied to the test images leading to disparity

maps.

After refinement of the image fusion algorithm, the computation of Digital Surface
Models (DSM) seems possible. Reconsider that all elevated objects in the optical
and in the SAR images stay distorted. Due to the different sensor geometries, they
show different perspectives of the same objects. Thus, three-dimensional construction
of buildings, based on the unrectified regions in optical and SAR image, could be

integrated.

Finally, the entire fusion strategy should be tested on further test images and corre-
sponding DEMs! Throughout this entire project, all algorithms developed and pro-
grammed have been evaluated with only one optical and one SAR image. All DEMs

have been simulated.

In conclusion, the entire fusion, classification and DSM computation should be regarded

as one step. Since improved classification results will lead to an improved fusion and vice

versa, an iterative procedure could be thought of. Results of a first fusion/classification/DSM

should be input to a second one and so on.
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Annex A

The ORFEO Program

The Optical and Radar Federated Earth Observation program (ORFEO) is a French-Italian
high resolution earth observation satellite programme, incorporating the optical system P1éi-
ades (France) and the SAR system COSMO-SkyMed (Italy). It was designed to satisfy both
civilian and military needs. Key fields of applications are: Defence, risk management and

assessment, humanitarian aid, cartography, urban and rural planning, geology, geophysics,

hydrology, agriculture, forestry, sea and coastline monitoring.

Antenna Support Structure
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Figure 7.2: (a) Simulation of a Pléiades satellite on its orbit (© CNES), (b) Structure of the

Pléiades satellites (© CNES)

With its two agile satellites the optical system Pléiades is capable of providing (parameters

taken from the CNES webpage [CNES, 2007¢]):

e daily access to every point on earth (excluding inner polar regions),

e a resolution of 0.7 m in vertical viewing panchromatic mode,
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e four spectral bands (blue, green, red and near infrared, see Fig. 7.2) with a resolution

of 2.8 m in vertical viewing,
e a field of view of 20 km,
e an acquisition of a 120 km by 120 km mosaic in the same orbit,
e nearly instantaneous stereoscopic image couples (or even triplet) of 20 km by 300 km,
e cloud free images covering a total area of 2,500,000 km? per year,

e a very accurate positioning of the images (<1 m/1000 km with ground control points)
facilitating data exploitation within Geographical Information Systems (GIS) (see po-
sitioning devices in Fig. 7.2(b)).
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Figure 7.3: Spectral bands of the Pléiades satellites (© CNES)

With its four flexible SAR satellites (see Fig.7.2 for satellite layout) the COSMO-SkyMed
system is capable of providing (parameters taken from the ASI webpage [, ASI|):

e all weather and night/daylight observations with X-Band SAR,

e multi-polarimetric and multi-temporal imaging modes,
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e images in ScanSAR mode (swathwidth 100 by 100 km?, geometric resolution 30 - 100

m),
e images in Stripmap mode (swathwidth 30 by 30 km?, geometric resolution 3 - 15 m),
e images in Spotlight mode (swathwidth 10 by 10 km?, geometric resolution 1 m),

e revisit time of any point on earth (excluding the inner polar regions) of less than 12

hours with all four satellites operational,

e interferometric image couples with a temporal separation of four days (in normal mode)

or 20 seconds (in tandem mode),
e image delivery for very urgent applications within 18 hours,

e overall system lifetime of 15 years with an individual satellite lifetime of five years.

Figure 7.4: Layout of the COSMO-SkyMed satellites ((¢) ASI)

In order to prepare for the exploitation of high resolution images captured by the ORFEO
sensors, the ORFEO Accompaniement Programme (refer to the webpage [CNES, 2007b] for
latest updates) was set up. Initialized and led by CNES, it was started in mid 2003 and
will last until 2009 (Fig.7.2). It consists of a methodological part and a thematic part. The
thematic part covers a large range of applications (see first paragraph of this section) which
are developed in close cooperation with the end users. Several thematic working groups exist
in order to specify and validate value added products and services necessary for a successful

operational period. The methodological part’s objective is the definition and development
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of tools for the achievement of tasks specified by the thematic working groups. The project
presented in this report was part of this methodological part and adds functionalities to
the ORFEO Toolbox (OTB). OTB is an open source software library for remote sensing
imagery processing. It contains a set of algorithms for the operational exploitation of the
future submetric radar and optical images (e.g. three dimensional aspects, change detection,
texture analysis, pattern matching and optical radar complementarities). It is mainly build
around the National Library of Medecine Insight Segmentation and Registration Toolkit
(ITK) [Kitware, 2007], an open source software library facilitating the analysis of medical
images. The approach presented in this report relies on already developed algorithms of OTB
and adds new tools. The proposed image registration algorithm will be integrated into OTB

after testing.

: Studies EDeveImeent’L In flight , Data distribution
: ; operation
PLEIADES-HR 1 mumssssssssssssss ? ; —

09;}2000 10,:’2003 end 2009

@

P
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Figure 7.5: Timeline of the Pléiades programme (€ CNES)
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Annex B

Input statistics and texture parameters for the SVM

classification

The following image properties were determined. An image stack was constructed out of

these seven image layers.

e Mean:

i = (7.1)

i+ J+m
n
with the number of rows 4, the number of columns j, the filter kernel radius m, the
amount of pixels inside the filter kernel n, the current greyvalue of the input image g; ;

and the new grey value for the output image g§7j.

e Median:
g;j = gnt1 if nis odd (7.2a)
K 2
1 . .
gij = 3 (g% +9%+1> if nis even (7.2b)
e Entropy:
k_
1o £ IPAl 1 7.3
gi,j_z(:) ZOQQE' (7.3)
1=

with the number of bits per pixel k£ i.e. each pixel may have a value between 0 and
2% — 1. The probability that the pixel of interest has the value i is described with P;.

o Energy:
2k—1

gz,',j = Z gz'Q (7.4)
i=0
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e Standard deviation:

, \/z;;zm g — )

n—1

with the greyvalue mean of the pixels inside the filter kernel .

e Skewness: - L 5
i+m m
5,5

n
e Kurtosis: . .
Tm JTm R 4
;o Yitiom j:jfm(glaj 1)
2/

n

(7.7)

All image layers were linearly rescaled between -1 and +1 since it is the required greyvalue

input range for the SVM classification.
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Supplementary Equations

Rotation matrix of the collinearity equations:

T11 = COSY - COSK r19 = —COSP - SINK r13 = SiNY
ro1 = SINW * SINY * COSK + COSW * SINK ro9 = —SINW - SINY * SINK + COSW * COSK T3 = —SINW * COSY
= COSW + COSY

T3] = —COSW - SINY * COSK + SINW - SINK+ T3y = COSW - SINY - SINK + SiNW - COSK 733

Table 7.1: Elements of the rotation matrix

Corrections to image coordinates due to radial distortion (most significant optical pertur-

bation):

Sr=K, - P +Ky-r°+Ks-1°, r= \/(m—xp)2+(y—yp)2
dzgist—r = % - o, dYdist—r = % - or

Table 7.2: Radial lens dirstortion with Kj;: radial distortion coefficients, r: radial distance,
z,y: image coordinates of the point of interest, x,,y,: projection of the principal
point onto the focal plane (does not necessarily coincide with the center of the CCD
array), drgist—r, dygist—y: corrections to the image coordinates [Fraser, 2007a|

Corrections to image coordinates due to decentering distortion (a small perturbation):
dzgist—qg =P+ (3 2> +y*) +2- Py 2y, dygisi—a=2-Pr-zy+Po- (22 +3-y?)

Table 7.3: Decentering dirstortion with P;: decentering distortion coefficients, z,y: image
coordinates of the point of interest, dzgst—q, dygist—q: corrections to the image

coordinates [Fraser, 2007a]
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Programmed source code

The image fusion strategy proposed in this project was programmed in C++, based on

OTB. In the following, the most important source code files are listed. Three different types

of source codes have to be distinguished: the files implememting the algorithms (.txx), the

corresponding header files (.h) and the test programs (.cxx).

Computation of the SAR amplitude image

e ImageVectorConvertRescale.cxx

Geometric Transformations for the Ortho-rectification

Inverse collinearity transformation with three rotation angles:

e itkCollinearity3DTransform_Inverse.txx

itkCollinearity3DTransform_Inverse.h

itkResampleImageDTMFilter.txx

itkResampleImageDTMFilter.h

transform_collinearity3D_7param_inverse.cxx

Direct collinearity transformation with rotation matrix elements:

e itkRatioPolynomial3DTransform_15param.txx
e itkRatioPolynomial3DTransform_15param.h
e itkResampleImageDTMFilter.txx

e itkResampleImageDTMFilter.h
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e transform_ratiopoly_3D_15param.cxx
Inverse collinearity transformation with rotation matrix elements:
e itkRatioPolynomial3DTransform_1l5param_Inverse.txx
e itkRatioPolynomial3DTransform_15param_Inverse.h
e itkResampleImageDTMFilter.txx
e itkResampleImageDTMFilter.h
e transform_ratiopoly_3D_15param_inverse.cxx
Iterative ortho-rectification for the optical image:
e itkCollinearity3DTransformIterative.txx
e itkCollinearity3DTransformIterative.h
e itkResampleImageDTMIterative.txx
e itkResampleImageDTMIterative.h
e transform_collinearity3D_iterative.cxx
Direct Toutin SAR transformation:

e itkSAR3DTransform_1llparam.txx

itkSAR3DTransform_1l1lparam.h

itkResampleImageDTMFilter.txx

itkResampleImageDTMFilter.h

transform_SAR_3D_1l1lparam.cxx

Inverse Toutin SAR transformation with centered image coordinates:
e itkSAR3DTransform_llparam_Inverse_Centered.txx
e itkSAR3DTransform_llparam_Inverse_Centered.h
e itkResampleImageDTMFilter.txx

e itkResampleImageDTMFilter.h
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e transform_SAR_3D_1llparam_inverse_Centered.cxx
Iterative ortho-rectification for the SAR image:
e itkSAR3DTransformIterative.txx
e itkSAR3DTransformIterative.h
e itkResampleSARDTMIterative.txx
o itkResampleSARDTMIterative.h
e transform_SAR3D_iterative.cxx
Detection of regions affected by occlusion or layover in the SAR image:
e itkLayoverShadowDetection.txx
e itkLayoverShadowDetection.h

e itkLayoverShadowDetection.cxx

Classification

Classification with SVM:

e metricsSVM.cxx

e Vectorization.cxx

e SVMImageEstimatorClassificationMultiExample_bClasses.cxx

e SVMImageEstimatorClassificationMultiExample_6Classes.cxx
Classification with MRF":

e MarkovFrameworkExampleJan_OPTOrig.cxx

e MarkovFrameworkExampleJan_SAROrig.cxx

e MarkovFrameworkExampleJan_SARFrost.cxx
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Feature Extraction

Point detection with the Lopes point detector:
e LopesImageFilter.txx
e LopesImageFilter.h
e LopesImageFilter.cxx
Line detection in the optical image:
e CannyEdgeDetectionImageFilter.cxx
Line extraction in the SAR image with the Tupin algorithm:
o AssymmetricFusionOfLineDetectorExample.cxx
Distance Mapping with the Danielsson approach:

1. DanielssonDistanceMapImageFilter.cxx

Registration

Registrations used in this project:

e reg_MeanSquares_RotTransl_GradientDescent.cxx (Program A)

e reg_NormCorr_RotTransl_GradientDescent.cxx (Program B)

e reg_MutInf_RotTransl_OnePlusOne.cxx (Program C)

e reg_NormCorr_RotTransl_OnePlusOne.cxx (Program D)

Tests with the collinearity /Toutin equations and an image pyramid as input:

e reg_test_MeanSquares_Toutin_GradientDescent.cxx

e reg_test_MeanSquares_ToutinlOparam_GradientDescent.cxx

e reg_test_MeanSquares_Collinearity_GradientDescent.cxx

e reg_test_NormalizedCorrelation_Collinearity_GradientDescent.cxx

e reg_test_MattesMutual_Collinearity_OnePlusOne.cxx
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